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a  b  s  t  r  a  c  t

Modeling  dynamical  systems  involves  two  subtasks:  structure  identification  and  parameter  estimation.
ProBMoT  is  a tool  for automated  modeling  of  dynamical  systems  that  addresses  both  tasks  simul-
taneously.  It  takes  into  account  domain  knowledge  formalized  as  templates  for  components  of  the
process-based  models:  entities  and  processes.  Taking  a  conceptual  model  of  the  system,  the  library  of
domain  knowledge,  and  measurements  of a  particular  dynamical  system,  it identifies  both  the  structure
and  numerical  parameters  of the  appropriate  process-based  model.  ProBMoT  has  two  main  components
corresponding  to  the  two  subtasks  of  modeling.  The  first  component  is  concerned  with  generating  can-
didate  model  structures  that  adhere  to the  conceptual  model  specified  as input.  The  second  subsystem
uses  the  measured  data  to  find  suitable  values  for  the  constant  parameters  of a given  model  by  using
parameter  estimation  methods.  ProBMoT  uses  model  error  to rank model  structures  and  select  the  one
that  fits  measured  data  best.

In this  paper,  we  investigate  the  influence  of  the  selection  of the  parameter  estimation  methods  on

the  structure  identification.  We  consider  one  local  (derivative-based)  and  one  global  (meta-heuristic)
parameter  estimation  method.  As  opposed  to  other  comparative  studies  of  parameter  estimation  methods
that  focus  on  identifying  parameters  of  a single  model  structure,  we  compare  the  parameter  estimation
methods  in  the context  of  repetitive  parameter  estimation  for  a  number  of  candidate  model  structures.
The results  confirm  the  superiority  of  the  global  optimization  methods  over  the  local  ones  in  the  context
of structure  identification.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Building models of ecosystems is at the heart of ecological
odeling. Models of aquatic ecosystems, in particular, typically

ncompass the trophic relations among the species that are present

n the system. Aquatic ecosystems are dynamical systems, the mod-
ling of which involves several stages (Luenberger, 1979). When
evising a model of an aquatic ecosystem, the first task is to decide
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on the structure of the model. Starting with a conceptual model
of the system of interest and using knowledge about modeling
aquatic ecosystems, the modeling expert selects the most suitable
model structure for the observed ecosystem. This is the structure
identification phase of the modeling process.

Once the model structure has been specified, the modeler has
to determine suitable values for the numerical parameters of the
model. To this end, he can use different techniques for estimating
the values of the parameters from measured data about the behav-
ior of the system. The data include measurements of the factors that
drive the changes of the ecosystem, as well as the quantities that

determine the state of the system. This is the parameter estimation
phase of the modeling process.

Tools for automated modeling of dynamical systems simultane-
ously tackle both structure identification and parameter estimation
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Fig. 1. Automated 

Džeroski and Todorovski, 1993; Todorovski and Džeroski, 1997;
odorovski, 2003). We  have developed ProBMoT—a Process-Based
odeling Tool, that uses a knowledge-based approach to solv-

ng the structure identification task. Background knowledge about
odeling aquatic ecosystems is captured into a library of model

ragments. Each model fragment is a small piece of structure
hat captures a single interaction in the system. ProBMoT then
omposes process-based models of the complete system under
tudy by using the library of domain knowledge and a con-
eptual model, which constraint the space of candidate model
tructures.

Current tools for automated process-based modeling, such
s LAGRAMGE 2.0 (Todorovski and Džeroski, 2006) and HIPM
Todorovski et al., 2005), use the local optimization method ALG-
17 (Bunch et al., 1993) to solve the parameter estimation task for
ach candidate model structure. Local optimization algorithms are
nsuitable for estimating the parameters of nonlinear models with
any parameters. The parameter space of such a model forms a

arge and multimodal landscape and finding the global optimum
resents too hard of a problem for a local algorithm. Global opti-
ization methods (for an overview, see Horst et al., 2000) and

n particular meta-heuristic methods are more robust in finding
olutions in large and complex parameter spaces.

Global optimization methods have already been successful
hen used for parameter estimation in ecological and environmen-

al models. Deterministic global optimization has been employed,
mong others, for parameter optimization of a groundwater model
Finley et al., 1998). Genetic algorithms and genetic programing
ave been extensively used in parameter calibration of lake ecosys-
em models (Whigham and Recknagel, 2001; Gilboa et al., 2009;
ao et al., 2008). Other global optimization algorithms used in cal-

brating ecological models include simulated annealing (Matear,
995) and particle swarm optimization (Afshar et al., 2011). Some
omparisons of the performance of different global optimization
ethods applied on the same task have also been performed (Athias

t al., 2000; Zhang et al., 2009). One recent study (Tashkova et al.,
012) has performed a comparison among local and global opti-
ization methods for estimating the parameters of a single model

f the trophic relations in a lake ecosystem.
All these studies assume a single known model structure and

ocus on the task of parameter estimation. In contrast, when solving
he structure identification task, automated modeling tools solve a
eries of parameter estimation tasks, one for each model structure.
n this paper, we study the influence of the method for parameter
stimation on the solution of the structure identification task. More
pecifically, we compare the performance of ProBMoT when using

he local optimization method ALG-717 and a global method for
arameter estimation, which is based on ant-colony optimization
alled Differential Ant Stigmergy Algorithm (DASA) (Korošec et al.,
012).
ing with ProBMoT.

We  compare the performance of ProBMoT/DASA and ProB-
MoT/ALG on a number of tasks of modeling phytoplankton
dynamics in 21 data sets stemming from four lake ecosystems. We
are particularly aimed at answering three central questions related
to the performance of structure identification:

Best Model Improvement What is the difference between the
errors of the best models obtained with ProBMoT/DASA and ProB-
MoT/ALG?
Overall Model Improvement What is the overall difference between
the errors of the models obtained with ProBMoT/DASA and ProB-
MoT/ALG?
Individual Model Improvement What is the difference between the
errors of each candidate model structure obtained with ProB-
MoT/DASA and ProBMoT/ALG?

The remainder of the paper is organized as follows. In Section 2,
we introduce ProBMoT, a tool for automated modeling of dynami-
cal systems from domain knowledge and observation data. Next, in
Section 3, we  describe the experimental setup for empirical evalu-
ation and comparison of the local and global optimization methods
used as parameter estimators within ProBMoT. In Section 4, we
present and analyze the results of the empirical evaluation. Finally,
Section 5 concludes the paper and presents directions for further
research.

2. ProBMoT—Process-Based Modeling Tool

In this section, we present ProBMoT (Process-Based Modeling
Tool), a tool for automated modeling of dynamical systems such as
aquatic ecosystems. ProBMoT approaches modeling by using both
data and domain knowledge about the given system. The general
domain knowledge about the considered class of systems, e.g., lake
food webs, is formulated in a library of domain knowledge. Using
the components of the library and a conceptual model of the system
at hand, candidate model structures are generated. Then, a parame-
ter optimization method uses the available data from the system to
estimate the numerical parameters of each model structure result-
ing in a completely specified candidate model. The model whose
behavior matches the measurements best is the result of the auto-
mated modeling process. The procedure of automated modeling
with ProBMoT is depicted in Fig. 1.

2.1. Process-based models

Process-based models (Bridewell et al., 2008) are a way of rep-

resenting dynamical systems. They consist of two  basic types of
elements: entities and processes. Entities correspond to the actors
of the observed system. These actors are involved in processes that
explain how entities interact, as well as what is the influence of the
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Fig. 2. An example model of trophic relation in a lake e

nteractions on the involved entities themselves. When we deal
ith equation-based models, entities correspond to the variables

nd processes to arithmetical expressions (equation fragments) in
he models.

The state of the system is represented as a set of entities. Each
ntity corresponds to one object that appears in the system. If we
onsider a simple lake ecosystem, nutrients such as phosphorus and
itrogen, as well as phytoplankton would be represented as entities.
he phenomena that occur in the system would be described by
he processes of the model. Each process in the model corresponds
o a single phenomenon in the system. For instance, the growth
f phytoplankton limited by nitrogen and phosphorus would be one
rocess. This process has two arguments, the phytoplankton and the
et of nutrients consisting of phosphorus and nitrogen.

Some processes that occur in the system can be more easily
escribed in terms of several smaller and simpler processes. We
onsider such processes as component processes, because they act
s components of the larger, more complex processes. In our simple
ake ecosystem, the phytoplankton growth process can be defined
n terms of two component processes that capture the limitation by
itrogen and phosphorus of the phytoplankton growth. The rela-
ions between the entities and processes in the system are depicted
n Fig. 2(a).

In addition to the purely qualitative relations depicted in
ig. 2(a), process-based models provide quantitative information
bout the phenomena they capture. Each entity is described with
ne or more properties that are fixed, called constants, and proper-
ies that can change with time, called variables. Thus, phytoplankton
an be specified by giving its concentration,  nutrient limitation (both
ariables) and maximal growth rate (constant), whereas nitrogen can
e specified by its concentration (variable) and the half saturation
onstant and alpha constant (stoichiometric ratio between algae
iomass and the nutrient). The same variables and constants appear
n phosphorus.  Processes provide quantitative descriptions of the
elation they represent as one or more equations. Furthermore, an
quation can contain only variables and constants of the entities
hat participate in the corresponding process. For example, nitrogen
tem. (a) Qualitative model and (b) quantitative model.

limitation,  which involves the nitrogen and phytoplankton entities,
can only contain references to the variables and constants specified
in either nitrogen or phytoplankton.  These quantitative relations are
depicted in Fig. 2(b).

Table 1 gives the representation of the simple lake ecosystem
conceptualized in Fig. 2 in the formalism of process-based models.
It contains three entities: nitrogen, phosphorus and phytoplankton.
Each entity, as noted earlier, is specified with a list of its vari-
ables and constants, which are the properties of the entity that
are important in the given context. For each variable, we  provide
its aggregation function, which specifies the method of aggre-
gation of the influences of different processes on that variable.
The nutrientLim variable of phytoplankton,  for example, specifies
that if there are several different processes influencing that vari-
able, these influences are to be multiplied. Constants are defined
in a straightforward manner, by assigning a numerical value
to them.

Table 1 also presents the main process of the system, the growth
of phytoplankton, limited by nitrogen and phosphorus, together
with its two component processes that capture the limitation by
the nutrients: nitrogenLim and phosphorusLim.  The limitation by the
nutrients is formulated as a Monod (saturation) function and cap-
tured within the nutrientLim variable. The growth process specifies
a nutrient limited model for growth captured in the time-derivative
(td) equations for the concentration of phytoplankton,  nitrogen and
phosphorus.

For each variable in the model, we compile one equation which
will have that variable on its left hand side. The equation is com-
piled by combining all equations in the model that influence that
variable, i.e., all equations which have the variable on the left
hand side. The aggregation function for combing the equations is
given in the definition of that variable. For instance, the variable
phyto.nutrientLim (the variable nutrientLim of the entity phyto) is

influenced by two  equations, those in the processes nitrogenLim
and phosphorusLim. Having in mind that the aggregation of the
influences is performed by multiplication, we  obtain the following
equation for phyto.nutrientLim:
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Table 1
A simple model of a lake ecosystem comprising nitrogen, phosphorus and
phytoplankton.

model simpleLakeModel;
entity nitroge n {

vars:
conc {aggregation:sum};

consts:
halfSat = 3.38,
alpha = 10.11;

}
entity phosphoru s {

vars:
conc {aggregation:sum};

consts:
halfSat = 0.05,
alpha = 0.09;

}
entity phyt o {

vars:
conc {aggregation:sum},
nutrientLim{aggregation:product};

consts:
maxGrowthRate = 2.99;

}
process growth(phyto , [nitrogen , phosporus] ) {

processes:
nitrogenLim(phyto, nitrogen),
phoshporusLim(phosphorus, nitrogen);

equations:
td(phyto.conc) = phyto.maxGrowthRat e

* phyto.nutrientLim * phyto.conc,
td(nitrogen.conc) = -nitrogen.alph a

*phyto.maxGrowthRate*phyto.nutrientLim*phyto.conc,
td(phosphorus.conc) = -phosphorus.alph a

*phyto.maxGrowthRate*phyto.nutrientLim*phyto.conc;

}
process nitrogenLim(phyto , nitrogen ) {

equations:
phyto.nutrientLim =
nitrogen.conc / (nitrogen.con c + nitrogen.halfSat);

}
process phosphorusLim(phyto , phosphorus ) {

equations:
phyto.nutrientLim = phosphorus.con c /
(phosphorus.conc + phosphorus.halfSat);

o
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w
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Table 2
A library of domain knowledge for the simple lake ecosystem.

library SimpleLakeLibrary;
template entit y Nutrien t {

vars:
conc {aggregation:sum};

consts:
halfSat {range : <0,15>},
alpha {range : <0,inf>};

}
template entit y Phytoplankto n {

vars:
conc {aggregation:sum},
nutrientLim{aggregation:product};

consts:
maxGrowthRate {range : <0.05,3>};

}
template proces s

Growth(pp : Phytoplankton, ns : Nutrient<1 , inf> ) {
processes:

NutrientLimitation(pp, <n:ns>);
equations:

td(pp.conc) =

pp.maxGrowthRate * pp.nutrientLi m * pp.conc,

td(<n:ns>.conc) = -n.alpha * pp.maxGrowthRat e

* pp.nutrientLi m * pp.conc;

}
template proces s

NutrientLim(pp : Phytoplankton , n : Nutrient ) {
equations:
}

phyto.nutrientLim = nitrogen.conc

nitrogen.conc + nitrogen.halfSat

· phosphorus.conc

phosphorus.conc + phosphorus.halfSat
(1)

By compiling the equations for all variables, we  get a system
f ordinary differential equations (ODEs) which is a quantitative
odel of the system. This model can then be used to perform

uantitative analysis such as model simulation and parameter cal-
bration.

.2. Libraries of domain knowledge

Different entities in the system can have common properties. If
e compare the nutrients nitrogen and phosphorus from Table 1,
e can see that they share similarities with respect to their vari-

bles and constants. This is to be expected, since they are both
utrients. Properties which hold for more entities are specified in
bjects which we call entity templates. Entity templates are used

or specifying common properties of entities. The idea is that the
emplate captures some general knowledge that holds for many
ifferent cases and can be reused when dealing with different spe-
ific scenarios. Nevertheless, an entity template is an incomplete
pp.nutrientLim = n.conc / (n.conc * n.halfSat);
}

entity specification in that it only contains partial information for
an entity. This information, however, is general and can be used for
creating more than one entity.

Similarly, if we  compare the processes nitrogenLim and phos-
phorusLim from Table 1, we  can see that they have equations that
adhere to the same general pattern, which is reasonable because
they both represent processes of saturated Monod type nutrient
limitation. Therefore, it makes sense to try to group such similar
processes within some more general concepts. For this reason, we
create process templates – objects that represent parameterized
recipes for creating processes. They can be seen as incomplete pro-
cesses, i.e., processes that only contain some general information
and lack some specific information.

The set of process and entity templates relevant to the domain in
question are collected into a library of domain knowledge. Table 2
shows the domain knowledge library which corresponds to the
simple lake ecosystem model given in Table 1. This library defines
two  entity templates, Nutrient and Phytoplankton.  They contain
the appropriate definitions for variables and constants which were
present in the model in Table 1. One important difference is that
a constant in the library is not bound to a particular numerical
value, but instead specifies a range of allowed values, allowing to
be reused for different entities with different values for each entity.

In addition to the two  entity templates, the simple lake ecosys-
tem library defines two process templates: Growth and NutrientLim.
The Growth process template defines a recipe for defining processes
of phytoplankton growth limited by a set of nutrients. Hence, the
Growth process template has two  arguments, the first of type Phy-
toplankton named pp,  which represents the phytoplankton whose
growth is being modeled, and the second a set of type Nutrient
named ns,  which represents the nutrients that limit the growth
of the phytoplankton. The specification Nutrient<1, inf> denotes a
set of Nutrients which has to contain at least one element and can
contain arbitrarily many elements. The Growth process contains

a component process of type NutrientLim for each Nutrient from
the set of nutrients ns denoted by the declaration: NutrientLimita-
tion(pp, <n:ns>). It also contains one time-derivative equation for
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Table 3
A simple lake model specified by using the simple lake library.

model simpleLakeMode l : SimpleLakeLibrary;
entity nitrogen : Nutrien t {

vars:
conc;

consts:
halfSat = 3.38,
alpha = 10.11;

}
entity phosphor us : Nutrien t {

vars:
conc;

consts:
halfSat = 0.05,
alpha = 0.09;

}
entity phyto : Phytoplankt on {

vars:
conc,
nutrientLim;

consts:
maxGrowthRate = 2.99 ;

}
process growth(phyto , [nitrogen , phosphorus]) : Grow th {

processes:
nitrogenLim, phosphorusLim;

}

t
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process nitrogenLim(phyto , nitrogen ) : NutrientLi m {}
process phosphorusLim(phyto , phosphoru s) : NutrientL im {}

he concentration of the phytoplankton, and one equation for each
utrient from the set of nutrients ns.

Having defined entity and process templates, we can use them
o create suitable entity and process instances. Every new instance
cquires all of the properties which were specified in the tem-
late. Properties which are characteristic for the particular instance

tself are specified within the instance definition. Using the library
rom Table 2, the simple lake model can be represented as given in
able 3. It is evident that using the templates defined in the library
e obtain a terse specification of the model. Instead of providing

 complete specification of the entities and processes in the model
tself, we create instances of the templates from the library. In the
imple lake model, nitrogen and phosphorus are instances created
sing the Nutrient template, whereas phyto is created using the
hytoplankton template. The growth process, on the other hand,
s created from the process template Growth, having phyto as
he first argument and the set of nitrogen and phosphorus as the
econd.
.3. Organizing entities and processes into hierarchies

Entity templates can be further arranged into hierarchies.
e put more common properties in the entity templates which

EcosystemEntity

+ conc <0.0,+inf>

Nutrient

  halfSat <0.0,15.0>

  alpha <0.0,+inf>

Phytoplankto n

* nutrientLim <-inf,+inf>

  maxGrowthRate <0.05,3.0>

MonodNutrientLi 

pp.nutrientLim = 
n.conc/(n.conc+n.half 

(a)

Fig. 3. Hierarchies of templates in the simple lake library. (a) Hierarc
odelling 245 (2012) 136– 165

are higher in the hierarchy. This enables the entity templates
which are lower in the hierarchy to inherit the properties of
their ancestors and provides a cleaner and more reusable design
of the entity templates. Fig. 3(a) shows how the entity tem-
plates can be arranged into a hierarchy in the simple lake
library. Note that Nutrient and Phytoplankton shared the com-
mon variable concentration (conc) which has now moved to
the EcosystemEntity. Nutrient and Phytoplankton are now sub-
types of EcosystemEntity and thus inherit its properties, i.e., they
inherit conc.

In the model in Table 3, nitrogen and phosphorus limitation had
the same functional form – that of a Monod function. In practice,
however, they can have any of a number of different functional
forms such as Monod2 or exponential functions. We  can arrange
the limitation processes into a hierarchy like the one presented
in Fig. 3(b) (Todorovski et al., 2005). The process template Nutri-
entLim is at the root of the hierarchy. It does not supply and
functional form by itself, but rather serves to organize the dif-
ferent nutrient limitation functions which are provided. Each of
the different limitation functions has NutrientLim as their ances-
tor in the process hierarchy. In this manner, we have formalized
the alternatives for the conceptual process of nutrient limita-
tion.

Using this approach, we can construct a library with hierarchies
of entity types and process alternatives. Table 4 gives the hierarchi-
cal form of the simple lake library while the corresponding model
is given in Table 5. Note that this model is the same as the model in
Table 3, with the exception of the limitation processes which now
have different forms.

2.4. Conceptual models

The model presented in Table 5 has a fully specified struc-
ture and fully specified parameters. Instead of committing to
specific processes, we  can build a model which contains some
process templates at higher levels of the hierarchy. We  will
refer to the latter as conceptual processes. Conceptual pro-
cesses do not have a specific functional form, but rather
state the semantics of the relation without committing to a
particular equation. In the hierarchy of process templates, con-
ceptual processes are process templates which are higher in
the hierarchy, i.e., have children process templates beneath
them. We call a model with conceptual processes a conceptual
model. Because a conceptual model contains processes which

are not bound to particular equations it is not a complete
model. As such, it cannot be translated to a set of differential
equations, and simulated. A conceptual model is an abstraction for
a whole class of specific models.

NutrientLim

pp : Phytoplankton<1,1>

n : Nutrient<1,1>

m

Sat)

Monod2NutrientLim

pp.nutrientLim = 
n.conc^2/(n.conc^2+n.halfSat )

ExponentialNutrientLim

pp.nutrientLim = 
1-exp(-n.halfSat*n.conc)

(b)

hy of entity templates and (b) hierarchy of process templates.
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Table 4
A hierarchical version of the simple lake library.

library SimpleLakeLibrary;
template entit y EcosystemEntit y {

vars:
conc {aggregation:sum};

}
template entit y Nutrient : EcosystemEntit y {

consts:
halfSat {range : <0,15>},
alpha {range : <0,inf>};

}
template entit y Phytoplankto n : EcosystemEntit y {

vars:
nutrientLim{aggregation:product};

consts:
maxGrowthRate {range : <0.05,3>};

}
template proces s

Growth(pp : Phytoplankton, ns : Nutrient<1 , inf> ) {
processes:

NutrientLim(pp, <n:ns>);
equations:

td(pp.conc) =

pp.maxGrowthRate * pp.nutrientLi m * pp.conc,

td(<n:ns>.conc) = -n.alpha * pp.maxGrowthRat e

* pp.nutrientLi m * pp.conc;

}
template proces s

NutrientLim(pp : Phytoplankton , n : Nutrient ) {}

template proces s MonodNutrientLi m : NutrientLi m {
equations:

pp.nutrientLim = n.conc / (n.conc + n.halfSat);
}
template proces s Monod2NutrientLi m : NutrientLi m {

equations:
pp.nutrientLim =
n.conc*n.conc / (n.conc*n.con c + n.halfSat);

}
template proces s ExponentialNutrientLim : NutrientLi m {

equations:
pp.nutrientLim = 1 - exp(-n.halfSat * n.conc);

}

Table 5
A simple lake model using the hierarchical library.

model simpleLakeMode l : SimpleLakeLibrary;
entity nitrogen : Nutrien t {

vars:
conc;

consts:
halfSat = 3.38,
alpha = 10.11;

}
entity phosphorus : Nutrien t {

vars:
conc;

consts:
halfSat = 0.05,
alpha 0.09;

}
entity phyto : Phytoplankto n {

vars:
conc,
nutrientLim;

consts:
maxGrowthRate = 2.99;

}
process growth(phyto , [nitrogen , phosphorus]) : Growt h {

processes:
nitrogenLim, phosphorusLim;

}
process nitrogenLim(phyto , nitrogen ) : MonodNutrientLi m {}
process phosphorusLim(phyto , phosphorus) :

ExponentialNutrientLim {}

Table 6
A conceptual model for the simple lake ecosystem.

conceptual mode l simpleConceptualModel : simpleLakeLibrary;
entity nitrogen : Nutrien t {

vars:
conc;

consts:
halfSat = null,
alpha = null;

}
entity phosphor us : Nutrien t {

vars:
conc;

consts:
halfSat = null,
alpha = null;

}
entity phyto : Phytoplankt on {

vars:
conc,
nutrientLim;

consts:
maxGrowthRate = null ;

}
process growth(phyto , [nitrogen , phosphorus]) : Grow th {

processes:
nitrogenLim, phosphorusLim;

}

process nitrogenLim(phyto , nitrogen ) : NutrientLi m {}
process phosphorusLim(phyto , phosphoru s) : NutrientL im {}

A conceptual model does not need to specify the values for
each parameter. On the contrary, it is common practice for a con-
ceptual model to omit the values of the numerical parameters,
except the ones that are known to hold for certain. A constant
parameter which is unspecified in the conceptual model is assigned
the special value null. A conceptual model for the lake ecosys-
tem is presented in Table 6. The nitoregenLim and phosphorusLim
process do not specify any alternative formulation of nutrient lim-
itation but are rather declared as general NutrientLim processes.
In addition, all of the parameters present in the model are left
unspecified.

2.5. Generation of specific candidate model structures

A conceptual process is an abstraction for the processes that
are beneath it in the process hierarchy. When we substitute one
of the specific processes for the conceptual process, we say that
it has acquired a specific functional form. The process nitro-
genLim from the conceptual model in Table 6 is declared as a
conceptual process of type NutrientLim. Using the library from
Table 4, we can conclude that nitrogenLim can acquire three dif-
ferent functional forms: MonodNutrientLim, Monod2NutrientLim
or ExponentialNutrientLim. Similarly, phosphorusLim also has the
type NutrientLim, which means that it can also acquire the same
three different forms independently of nitrogenLim. Hence, the
whole conceptual model can be specified in 3 × 3 = 9 different
ways. In other words, we  say that it generates 9 specific mod-
els. ProBMoT generates all specific models for a given conceptual
model, which are obtained by using all possible substitution
rules. These specific models have fully specified model struc-
ture, but can have unspecified parameters. The values of the
unspecified parameters are determined by parameter estima-
tion.

2.6. Parameter estimation
Parameter estimation is the final step in automated modeling of
dynamical systems (Gershenfeld, 1999). Given a model structure
for the observed system and measured data, its goal is to esti-
mate the model parameters in order to minimize the discrepancy
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etween the measurements and model predictions. In particular,
e use the maximum-likelihood estimator introduced by R. A.

isher in 1912 (Pfanzagl, 1994) that maximizes the probability of
bserving the given data if a given model is chosen. The likelihood
unction depends on the probability of the measurements in the
ata set. Assuming that the measurements follow independent nor-
al  distributions with constant variance, the maximum-likelihood

arameter estimation maps into a nonlinear least-squares esti-
ation of the parameters, which minimizes the sum of squared

rrors between the observed values and the values predicted by
he model. Due to its intuitive appeal and simplicity, least-squares
stimation is commonly used for parameter estimation in nonlinear
odels.
The most basic form of least-squares estimation uses the sum

f squared errors (SSE) for expressing the model error, which sums
p the squares of the differences between the measured values yi
nd the predicted values ŷi, at each time point i.

SE =
N∑

i=1

(yi − ŷi)
2 (2)

Root mean squared error (RMSE) divides the SSE by the number
f time points N and takes the square root, making the measure-
ent units and scale comparable to the ones of the observed output

ariable.

MSE =
√

1
N

SSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)
2 (3)

Parameter estimation leads to challenging optimization tasks
hat typically require advanced meta-heuristic approaches for
lobal optimization, such as evolutionary or swarm-based meth-
ds. Ecological models are typically nonlinear and have many
arameters; the measurements are sparse and imperfect due to
oise. All these constraints can lead to identifiability problems,

.e., the inability to uniquely identify the unknown model param-
ters, making parameter estimation an even harder optimization
ask.

.6.1. Local and global optimization methods
Classical approaches to nonlinear continuous optimization are

ainly local optimization methods (such as direct-search and
erivative-based methods) that rapidly converge to the opti-
um,  provided that the search is started from an initial point

hat is in close proximity of the optimum. As these methods do
ot have mechanism to escape from the local optima, they only
uarantee local convergence. Derivative-based methods are an
dequate choice for smooth and unimodal objective functions,
ut they can fail if the landscape is discontinuous, non-
mooth, multi-modal or ill-conditioned. The disadvantage of the
irect-search method is that they become less efficient for high-
imensional problems. Therefore, it is recommended to use global
ptimization approaches that are more robust regarding the
imensionality and the landscape characteristic of the search
pace.

Global optimization approaches can be divided into determinis-
ic (exact) and stochastic (probabilistic). The deterministic methods
e.g., branch and bound, interior-point, and cutting planes) can
ocate the global optima and assure their optimality, but do not
uarantee that they can solve any type of global optimization prob-
ems in finite time. Stochastic methods, on the other hand, rely

n probabilistic search rules to find good solutions (Törn et al.,
999). They can locate the neighborhood of the global optima
elatively quickly, but their efficiency comes at the cost of not
eing able to guarantee global optimality. In the last two decades,
odelling 245 (2012) 136– 165

special attention has been given to meta-heuristics: These are
general-purpose algorithms that can find acceptable solutions in
a reasonable time-frame in complex and large search domain.
Most meta-heuristics are inspired by natural processes such as
evolution (evolutionary algorithms) or social behavior of biolog-
ical organisms, e.g., ant colony optimization (Dorigo and Stützle,
2004).

Our study includes comparison of two optimization meth-
ods: the differential ant-stigmergy algorithm (DASA), a recently
developed meta-heuristic method for global optimization, and
the derivative-based algorithm 717 (ALG-717) updated with
random restarts to cope with the challenge of multiple local
optima.

2.6.2. Algorithm 717 (ALG-717)
Algorithm 717 (ALG-717) is a set of modules for solv-

ing the parameter estimation problem in nonlinear regression
models, including the nonlinear least-squares, maximum like-
lihood, and some robust fitting problems (Bunch et al., 1993).
The basic method is a generalization of NL2SOL—an adaptive
nonlinear least-squares algorithm, which uses a model/trust-
region technique for computing trial steps along with an
adaptive choice for the Hessian model. Since ALG-717 is not
a global search algorithm, we wrapped the original proce-
dure in a loop of restarts with randomly chosen initial points,
providing in some way  a simple global search. The number
of restarts was  set to use a number of function evaluations
comparable to that of the other method (DASA). We  used the
module for constraint (on parameter bounds) optimization with
user-supplied routines for the first and second-order derivatives of
the objective function.

2.6.3. The differential ant-stigmergy algorithm (DASA)
The DASA algorithm was  proposed by Korošec et al. (2012).  It

is a version of an Ant Colony Optimization (ACO) meta-heuristic,
designed to successfully cope with high-dimensional continuous
optimization problems. The rationale behind the algorithm is in
memorizing the move in the search space that improves the current
best solution, and using it in further searches. The algorithm uses
pheromones as a means of communication between ants (a phe-
nomenon called stigmergy), combined with graph representation
of the search space.

The most important property of DASA is that it transforms the
problem into a graph-search problem by fine-grained discretiza-
tion of the continuous domain of the parameters’ differences, unlike
the common way  of discretizing parameters values. The parame-
ters’ differences assigned to the graph vertices are used to navigate
through the search space.

3. Experimental setup

The aim of our study is to compare the influence of two
established methods for parameter estimation, ALG-717 and
DASA, on the overall process of automated modeling of aquatic
ecosystems. The study addresses the task of modeling phyto-
plankton dynamics in four different aquatic ecosystems. First,
we developed a library for modeling aquatic ecosystems, which
we used as domain knowledge. Second, we obtained data from
four ecosystems, relevant for modeling phytoplankton dynam-
ics. Finally, we formulated conceptual models for each ecosystem.
The resulting experimental setup consisted of 21 tasks of mod-

eling phytoplankton dynamics, where a task is defined by the
combination of a conceptual model and a data set. Each task
was  given to ProBMoT using both ALG-717 and DASA as param-
eter estimation methods, yielding a total of 42 experiments. The
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Fig. 4. The generalized scheme of processes for modeling conceptual m

etails of the experimental setup are given in the following
ubsections.

.1. A library for modeling aquatic ecosystems

Using the formalism for representing domain knowledge pre-
ented in Section 2, we developed a library for modeling aquatic
cosystems. The library is based on the work for process-based
odeling by Atanasova et al. (2006b), where a similar library was

eveloped using a different formalism. The entire library is given
n Table 12 in Appendix A.

The generalized conceptual model for modeling aquatic ecosys-
ems underlying the library is given in Fig. 4. The rounded rectangles
epresent the entity types and include Nutrient, Primary Producer
nd Zooplankton. The boxes represent the interactions between the
ntities in the form of process types. The library is constructed
round the primary producer as a central entity. It contains pro-
esses suitable for modeling the dynamics of the primary producer.
he main processes that affect the dynamics are growth, res-
iration, mortality, sedimentation and grazing. In the following
ubsections, we briefly present the modeling knowledge encoded
n the library.

.1.1. The growth of primary producers
The growth process positively influences the concentration of

he primary producer and can be stated as:

p.conc′ = pp.growthRate · pp.conc (4)

here pp.conc is the concentration of the primary producer and
p.growthRate is the primary producer growth rate. The growth rate
tself can be formulated as a limited growth rate, influenced by
emperature, light and nutrient limitation functions:

p.growthRate = pp.maxGrowthRate · pp.tempGrowthLim

· pp.lightLim · pp.nutrientLim (5)

here pp.maxGrowthRate is the maximal growth rate under opti-
al  conditions, pp.tempGrowthLim is the temperature influence on

he growth rate, pp.lightLim is the influence of light on the growth
ate, and pp.nutrientLim is the product of the limitation functions
f all nutrients that are relevant for the growth of the primary
roducer.

Each type of limitation can be modeled with several dif-
erent limitation functions that are present in the library. The

nfluence of temperature on the growth can be modeled with
wo linear functions and an exponential function. In addition
o this, temperature limitation can be turned off, by setting it
o 1, which yields 4 alternatives for modeling the temperature
s, underlying the library of domain knowledge in aquatic ecosystems.

influence. Similarly, light influence can be turned off or mod-
eled with Monod or the optimal light limitation function, whereas
nutrient limitation (for each nutrient) can be turned off or
modeled with one of the Monod, Monod2 and exponential func-
tions.

If all limitations are ‘turned off’ (equal to 1), then the
pp.growthRate coefficient equals to pp.maxGrowthRate,  i.e., is con-
stant and the growth process is formulated as non limited, i.e.,
exponential growth function.

3.1.2. Respiration
The respiration of a primary producer decreases its mass, i.e.,

the phytoplankton mass. It can be expressed as an exponential
decay or can be temperature-influenced. In the case where respi-
ration is temperature-influenced, the influence of temperature can
be expressed in terms analog to the influence of temperature on
phytoplankton growth, i.e., no limitation at all or limitation in the
form of one of two  linear functions and one exponential limitation
function.

3.1.3. Mortality
The mortality process represents non-predatory mortality and

is usually included in scenarios where there is no grazing process
included. The mortality can be expressed as an exponential decay
of phytoplankton (first order kinetics) or second order kinetics.
The process may  be temperature-limited. The temperature limi-
tation functions in the library include two  linear functions and one
exponential function.

3.1.4. Grazing
The grazing process included in the library is formulated for

zooplankton filter-feeders as:

pp.conc′ = −zoo.amxFiltrationRate · zoo.tempGrowthLim

· zoo.phytoLim · zoo.conc · pp.conc (6)

where zoo.maxFiltrationRate is the maximal filtration rate coeffi-
cient, zoo.conc is the zooplankton concentration and pp.conc is the
concentration of the phytoplankton. The temperature influence on
grazing is specified trough the zoo.tempGrowthLim, term which con-
tains a linear or an exponential temperature limitation function
option.
3.1.5. Sedimentation
Loss of phytoplankton biomass due to sedimentation is for-

mulated by using the sedimentation rate coefficient, depth of the
water column and the present concentration of the phytoplankton.
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Table 7
Summary of measured data for the modeled ecosystems.

Bled Glumsø Kasumigaura Venice

Environmental influence Temperature Temperature Temperature Temperature
Light Light Light

Nutrients Phosphorus Phosphorus Phosphorus Phosphorus
Nitrogen Nitrogen Nitrogen Nitrogen
Silica Ammonia

Primary producer Phytoplankton Phytoplankton Phytoplankton (as Chl-a) Algal biomass of Ulva rigida

Zooplankton Zooplankton (Daphnia hyalina) Zooplankton None None

Years 1995–2002 1973/1974 1986–1992 Loc. 0: 1985/1986
1974/1975 Loc. 1, 2, 3: 1990/1991

Number of data sets 8 2 7 4
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he process may  be temperature-influenced, where the temper-
ture functions include two linear functions and one exponential
unction.

.2. Data sets

The data used for this study comes from four different ecosys-
ems, namely Lake Bled in Slovenia, Lake Glumsø in Denmark,
ake Kasumigaura in Japan, and the Lagoon of Venice in Italy.
or each aquatic ecosystem, a number of physical, chemical and
iological parameters were measured regularly for a sustained
eriod of time in order to obtain the resulting data sets. Table 7
rovides a summary of the data sets.

Lake Bled is a typical subalpine lake of glacial-tectonic origin. It
ccupies an area of 1.4 km2 with a maximum depth of 30.1 m and
n average depth of 17.9 m.  The data set about the lake (obtained
rom the Slovenian Environmental Agency) comprises measure-

ents of physical, chemical and biological parameters from 1995
o 2002 with a monthly frequency. The data used for modeling
re as follows: temperature, light, dissolved inorganic nutrients in
he lake (phosphorus, nitrogen and silica), and total phytoplank-
on biomass, and the zooplankton species Daphnia hyalina. The
ata were used as daily interpolated values between the measured
oints, obtained by using cubic spline interpolation (Atanasova
t al., 2006c).

Lake Glumsø is situated in a sub-glacial valley in Denmark. It is

 shallow lake with an average depth of about 2 m and a surface
rea of 266,000 m2. The data set for Lake Glumsø includes daily
easurements of water temperature, inorganic soluble nitrogen,

oluble phosphorous, total phytoplankton, and zooplankton. In this

able 8
 summary of the modeling tasks per domain (ecosystem).

Bled Glumsø 

Entities Phosphorus Phospho
Nitrogen Nitrogen
Silica  Phytopla
Phytoplankton Zooplank
Zooplankton

Conceptual processes Growth Growth 

Respiration Respirati
Grazing Grazing 

Sedimentation Sedimen

Candidate models 27216 3024 
case, we  used two  years of daily measurements from April 1973 to
April 1974 and from October 1974 to October 1975 (Atanasova et al.,
2008).

Lake Kasumigaura is a shallow lake in Japan with an average
depth of 4 m.  It has a volume of 662 million m3 and a surface area
of 220 km2. The lake’s dataset comprises measurements from 1986
to 1992 of: water temperature, global radiation, dissolved inorganic
phosphorus, total phytoplankton, measured as chlorophyll-a (chl-
a). The measurements were used as interpolated values between
the actual measured values using linear interpolation. The actual
frequency of the measurements is monthly (Atanasova et al.,
2006a).

The Lagoon of Venice has a surface area of 550 km2, with an aver-
age depth of less than 1 m.  The data set used here includes weekly
measurements for slightly more than one year at four different
locations (0, 1, 2, and 3) in the Lagoon. Location 0 was  sampled
in 1985/1986, locations 1, 2, and 3 in 1990/1991. The sampled
quantities are nitrogen in ammonia (nh), nitrogen in nitrate (no),
phosphorus in orthophosphate, temperature, and algal biomass
(Ulva rigida). Related modeling experiments with this data set were
described by Atanasova (2006).

We assemble the data sets according to domains and years.
This yields eight data sets from Lake Bled, two  from Glumsø, seven
from Kasumigaura and four from Venice, giving a total of 21 data
sets.
3.3. Automated modeling tasks

In this study, we focus on the task of modeling phytoplankton
dynamics using data from the domains presented in Section 3.2.  For

Kasumigaura Venice

rus Phosphorus Phosphorus
 Nitrogen Nitrate
nkton Phytoplankton Ammonia
ton Zooplankton Phytoplankton

Growth Growth
on Respiration Respiration

Mortality Mortality
tation Sedimentation Sedimentation

5832 18144
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D. Čerepnalkoski et al. / Ecolog

ach domain (ecosystem), we prepare a conceptual model appro-
riate for modeling that particular case. The conceptual model is
rafted according to the format presented in Section 2.4.  It includes
he entities for which we have measurements and the concep-
ual top-level processes appropriate for modeling phytoplankton
ynamics: growth, respiration, mortality, sedimentation, and graz-

ng by zooplankton. For two of the domains, Bled and Glumsø,
here is data about zooplankton concentration. In these cases, we
nclude a grazing process in the conceptual models. For Kasumi-
aura and Venice, where there is no data about zooplankton species,
e include a natural mortality process instead. The conceptual
odels are outlined in Table 8.
For each domain, we tailor the general library presented in

ection 3.1 to the requirements of the particular modeling task.
e include processes which are needed for completing the con-

eptual model of the system. Based on previous analyses and
revious knowledge about the domain, specific process alterna-
ives which are appropriate for the given domain are taken into
ccount, whereas unsuitable alternatives are discarded. Informa-
ion about which processes are included in the pertinent libraries
s given in Table 9.

For each modeling task, starting with a conceptual model
nd a library of domain knowledge, ProBMoT, as explained in
ection 2.5,  generated all specific candidate models structures.
or the Bled domain it generated 27,216 candidate models. The
lumsø task yielded 3024 candidates, the Venice task 5832 and
asumigaura task 18,144 candidate models. The constant parame-

ers of each generated candidate model structure are fitted with
he two parameter estimation approaches described in Section
.6.

The data from the domains are divided into separate data
ets for each year. In the case of Venice, where data were col-
ected at different locations, one data set corresponds to one
ocation where the measurements were taken. In our experiments,
he goal is to construct a separate model for each data set. The

odel is an explanatory model of the system for the given time
ange.

. Results and discussion

In this section, we first present the methodology for analyzing
he influence of the parameter estimation method on the per-
ormance of ProBMoT. The analysis is based on the comparison
f the performance of ProBMoT when using the ALG-717 (ProB-
oT/ALG) and the DASA (ProBMoT/DASA) optimization algorithms

or solving the parameter estimation task. In the second part of
he section, we present and discuss the results of the empirical
valuation.

.1. Evaluation methodology

Each run of ProBMoT generates a series of N candidate model
tructures and applies parameter estimation method to obtain
he models mi, i = 1, . . .,  N. For each candidate model struc-
ure ProBMoT calculates its error RMSE(mi) on the provided
ata set. The resulting vector of model errors is schematically
resented in Fig. 5(a), where the number in the lower left
orner of each box represents the sequential number of the
odel structure (as generated by ProBMoT) and the number

n the center of the box represents the model error (for the
et of parameter values estimated by ProBMoT). Let us denote

he models obtained by ProBMoT/ALG and ProBMoT/DASA
ith mA

i
and mD

i
, respectively. To evaluate the impact of the

ptimization method on the ProBMoT performance, we  thus
ompare the vectors (RMSE(mA

1), RMSE(mA
2), . . . , RMSE(mA

N))
odelling 245 (2012) 136– 165 145

and (RMSE(mD
1 ), RMSE(mD

2 ), . . . , RMSE(mD
N)) (Fig. 5(b)). We

emphasize here three aspects of this comparison, depicted
in Fig. 5(c–e), that correspond to the three central questions
below.

Best Model Improvement. What is the difference between the
errors of the best models obtained with ProBMoT/DASA and ProB-
MoT/ALG?

Most importantly, we want to compare the best model found
by ProBMoT/DASA to the best model found by ProBMoT/ALG as
depicted in Fig 5(c). This is the key aspect of the comparison,
since the modeler focus his attention to the best model found by
ProBMoT. Our hypothesis is that ProBMoT/DASA leads to the best
model with lower error. Note that the best models found by ProB-
MoT/DASA and ProBMoT/ALG can differ not only in the parameter
values but also it the model structure.

Overall Model Improvement. What is the overall difference
between the errors of the models obtained with ProBMoT/DASA
and ProBMoT/ALG?

Comparing the best models is an important aspect of com-
parison, but only provides a part of the whole picture. Here,
we extend our attention from the best models to overall model
comparison as depicted in Fig. 5(d). We  first rank the mod-
els obtained by ProBMoT/ALG and ProBMoT/DASA with respect
to their errors, i.e., we  obtain two ranked lists of models, such
that RMSE(mA

a1
) ≤ RMSE(mA

a2
) ≤ . . . ≤ RMSE(mA

aN
) and RMSE(mD

d1
) ≤

RMSE(mD
d2

) ≤ . . . ≤ RMSE(mD
dN

). We  proceed with comparison of
these two ranked lists as follows.

First, we check the extent to which ProBMoT/DASA outper-
forms ProBMoT/ALG, i.e., whether only the best ProBMoT/DASA
model outperforms the best ProBMoT/ALG model or this holds
for a wider range of models. We  will be able to identify the
ranges of models where ProBMoT/DASA is better and possibly
where ProBMoT/ALG is better. Our hypothesis is that ProB-
MoT/DASA will outperform ProBMoT/ALG on the whole range of
models.

Second, it will show whether the amount by which ProB-
MoT/DASA outperforms ProBMoT/ALG on the ith best model, as
measured by the difference RMSE(mA

ai
) − RMSE(mD

di
), increases or

decreases as we  move towards lower ranked models. Clearly, lower
ranked models will have larger model errors, but we  are also inter-
ested in the way  the model error increases. Slow increase in model
error means that we  have a number of candidate models which
have virtually equal performance and choosing among them is
subject to other non-trivial constraints. Very rapid increase in the
model error makes the distinction between good and bad models
clear and makes choosing a final model an easier task. It is prefer-
able to have a large error increase at the beginning of the ranked
list so one can clearly distinguish between a few good and a major-
ity of bad models. Our hypothesis is that ProBMoT/DASA provides
a more clear distinction between good and bad models than
ProBMoT/ALG.

Finally, we measure of the overall performance of ProBMoT/ALG
and ProBMoT/DASA, by summing up the errors of all candidate
models:

OverallA =
N∑

i=1

RMSE(mA
i ), OverallD =

N∑
i=1

RMSE(mD
i ) (7)

Individual Model Improvement. What is the difference between
the errors of each candidate model structure obtained with ProB-
MoT/DASA and ProBMoT/ALG?
In the previous type of comparison, the models are ordered
according to ascending RMSE. When we  are comparing the ith
best ProBMoT/ALG model mai

(pA
ai

) to the ith best ProBMoT/DASA
model mdi

(pD
di

), we are in general comparing two different
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Table 9
Outline of the process templates modeled in the specific libraries for each modeling task.

Process template Bled Glumsø Kasumigaura Venice

NutrientPrimaryProducerInteraction + + + +

LightInfluence + + + +
NoLightLim −  − − +
LightLim + + + −

MonodLightLim + + + −
OptimalLightLim + + + −

NutrientInfluence + + + +
NoNutrientLim − − − −
NutrientLim + + + +

MonodNutrientLim + + + +
Monod2NutrientLim + + + +
ExponentialNutrientLim + + + +

Growth + + + +
GrowthRate + + + +

LimitedGrowthRate + + + +

TempGrowthInfluence + + + +
NoTempGrowthLim − − − −
TempGrowthLim + + + +

Linear1TempGrowthLim + + + +
Linear2TempGrowthLim + + + +
ExponentialTempGrowthLim + + + +

RespirationPP + + + +
ExponentialRespirationPP + + + −
TempRespirationPP + + + +

Temp1RespirationPP + + + +
Temp2RespirationPP + + + +

TempRespInfluence + + + +
NoTempRespLim − − − −
TempRespLim + + + +

Linear1TempRespLim + + + +
Linear2TempRespLim + + + +
ExponentialTempRespLim + + + +

MortalityPP − − + +
ExponentialMortalityPP − − − +
TempMortalityPP − − + +
Temp2MortalityPP − − + +

TempMortInfluence − − + +
NoTempMortLim −  − − +
TempMortLim − − + +

Linear1TempMortLim − − + +
Linear2TempMortLim − − + +
ExponentialTempMortLim − − + +

Sedimentation + + + +
TempSedInfluence + + + +

NoTempSedLim + + + +
TempSedLim + + + −

Linear1TempSedLim + + + −
Linear2TempSedLim + + + −
ExponentialTempSedLim + + + −

FeedsOn + + − −
FeedsOnFiltration + + − −

PhytoLim + + − −
NoPhytoLim − − − −
MonodPhytoLim + + − −
Monod2PhytoLim + + − −
ExponentialPhytoLim − − − −
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ProBMoT/DASA

ProBMoT/ALG

2
4

5
3

Best

Best

ProBMoT/DASA

ProBMoT/ALG

Sort

Sort

2012 952
4 3 5 2 1

ProBMoT/DASA

ProBMoT/ALG Sort

Apply
ProBMoT/ALG 

Order

101057221
1 2 3 4 5

9251220
1 2 3 4 5

101057221
1 2 3 4 5

9251220
1 2 3 4 5

722110105
3 4 5 1 2

8445227
1 2 3 4 5

ProBMoT/DASA

ProBMoT/ALG 101057221
1 2 3 4 5

9251220
1 2 3 4 5
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118Overal l

Overal l

101057221
1 2 3 4 5

9251220
1 2 3 4 5

722110105
3 4 5 1 2

1220925
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(b)

(c)

(d)

(e)

Fig. 5. Schematic representation of the evaluation methodology. (a) Vector of model errors; (b) ProBMoT/ALG and ProBMoT/DASA vectors of model errors; (c) Best Model
Improvement; (d) Overall Model Improvement; (e) Individual Model Improvement.
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odelstructures, i.e., ai /= di in the general case. In the final and
ost stringent comparison, we compare the performance of ProB-
oT/DASA and ProBMoT/ALG on the same model structure, i.e.,
i(pD

i
) and mi(pA

i
), for i = 1, . . .,  N.

To perform this comparison, we use the ranking
f models obtained by ALG to rank both list of mod-
ls, i.e.: RMSE(mA

a1
) ≤ RMSE(mA

a2
) ≤ . . . ≤ RMSE(mA

aN
) and

MSE(mD
a1

), RMSE(mD
a2

), . . . , RMSE(mD
aN

) as depicted in
ig. 5(e). We  then observe the distribution of differences
MSE(mA

ai
) − RMSE(mD

ai
) for i = 1, . . .,  n, where the value of n

anges from 2 through 10, 100, 1000 (and 10,000, if N > 10, 000)
o N.
.2. Best Model Improvement

Table 10 shows the RMSE values for the best models found with
roBMoT/ALG and ProBMoT/DASA on all data sets. Since the models

able 10
oot mean squared error (RMSE) of the best models found with ProBMoT/ALG and ProBM

Bled 

‘95 ‘96 ‘97 ‘98 ‘9

ProBMoT/ALG 0.650 0.362 0.800 0.802 1
ProBMoT/DASA 0.376 0.206 0.157 0.443 1

Kasumigaura 

‘86 ‘87 ‘88 ‘89 ‘90 ‘91

ProBMoT/ALG 1.685 0.775 0.674 0.782 0.648 0.8
ProBMoT/DASA 1.249 0.646 0.381 0.417 0.350 0.7
selected by ProBMoT/DASA always have a lower RMSE than those
selected by ProBMoT/ALG, we can conclude that DASA outperforms
ALG on each modeling task.

Fig. 6 shows the simulations of the best ProBMoT/ALG and the
best ProBMoT/DASA model on some of the tasks, along with the
measured data. There is a considerable difference in the errors
of the best models found on the Bled ‘97 task. This quantitative
difference in the RMSE values is directly visible as a qualitative dif-
ference in the simulations. The ALG model simulation exhibits some
resemblance to the measured data, whereas the DASA model sim-
ulation follows the dynamics of the phytoplankton concentration
very closely, both in terms of time of rapid phytoplankton growth
and peak amplitude.
The Glumsø ‘73 task gives similar results. The DASA model rep-
resents a close match of the original data, whereas the ALG model
only gives a rough approximation, completely missing the main
peak of phytoplankton concentration.

oT/DASA.

Glumsø

9 ‘00 ‘01 ‘02 ‘73 ‘74

.282 2.439 0.683 0.771 0.099 0.074

.205 0.821 0.455 0.240 0.034 0.030

Venice

 ‘92 L0 L1 L2 L3

19 0.981 138.417 221.619 111.924 55.987
66 0.458 83.431 203.007 88.459 43.085
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Fig. 6. Simulations of the best models found with ProBMoT/ALG and ProBMoT/DASA on several data sets. (a) Bled ‘97; (b) Glumsø ‘73; (c) Kasumigaura ‘92; (d) Venice 0.
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The Kasumigaura ‘92 task is a more challenging task. On
his task, ALG does not manage to find an admissible model
hich can be seen from the large error and the simulation,
hich follows the measured data very poorly. DASA does not

xcel on this task either, but still manages to roughly iden-
ify the two peaks in the phytoplankton concentration and their

agnitude.
An even poorer performance of ALG is observed on the Venice

ata set at location 0. The model found by ALG produces erratic
ehavior and fails to capture any underlying dynamics. The DASA
odel represents a considerable improvement over ALG, despite of

ts poor overall quality. The simulations of the best models for all
asks are given in Appendix B. Our hypothesis that the best ProB-

oT/DASA model outperforms the best ProBMoT/ALG model on
ach task is thus fully confirmed.

.3. Overall Model Improvement

Fig. 7 shows the error profiles for both ALG and DASA on the
asks from Fig. 6. The profile curves on these tasks, as well as
ll the other tasks (presented in Appendix C) clearly show that
ASA manages to find better models throughout the space of model

tructures. In other words, not only the best model found with ProB-

oT/DASA is better than the best one found with ProBMoT/ALG,

ut also the second best model found with ProBMoT/DASA is bet-
er than the second best model found with ProBMoT/ALG, the third
est model from ProBMoT/DASA is better than the third best model
from ProBMoT/ALG, and so forth. The only exceptions are the few
models at the very tail of the ranked list of models. In these cases,
both ALG and DASA find poor parameter values, but in some cases
the models with parameter values found with DASA have larger
RMSE than those with parameters found with ALG. Our hypoth-
esis that ProBMoT/DASA outperforms ProBMoT/ALG, not only on
the best models for each task, but on the complete range of mod-
els (with the exception of the very few models at the end) is thus
confirmed.

Table 11 presents the overall error of ProBMoT/ALG and
ProBMoT/DASA on each task. It is clear that the total error of ProB-
MoT/DASA is smaller than the total error of ProBMoT/ALG on each
task.

A closer inspection of the error profiles shows that the shapes of
the profiles of ProBMoT/ALG and ProBMoT/DASA are very different.
In general, the RMSE of the ProBMoT/ALG models increases rapidly
with the increase in the rank number at the beginning of the
error profile and remains steady from there on. Thus, ProBMoT/ALG
clearly distinguishes a small number of good models from a large
number of bad models. The opposite is true for the shape of the
ProBMoT/DASA profile. A very large part of the models that appear
at the beginning of the profile have indistinguishably similar RMSE
values and a much smaller part of the models at the end have much

larger RMSE values. Thus, DASA does not provide a useful distinction
of good and bad models. This is contrary to our initial expectations,
and our hypothesis that DASA will provide a more clear distinc-
tion of good and bad models is rejected. Within the conclusion
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Fig. 7. Error profile curves of models found with ProBMoT/ALG and ProBMoT/DASA on several data sets. (a) Bled ‘97; (b) Glumsø ‘73; (c) Kasumigaura ‘92; (d) Venice 0.

Table  11
Total root mean squared error (total-RMSE) of all models generated with ProBMoT/ALG and ProBMoT/DASA.

Bled (×106) Glumsø (×103)

‘95 ‘96 ‘97 ‘98 ‘99 ‘00 ‘01 ‘02 ‘73 ‘74

ProBMoT/ALG 23.44 22.48 14.59 27.01 107.6 46.64 39.32 29.89 39.01 38.07
ProBMoT/DASA 3.802 7.442 3.247 7.058 9.555 7.802 15.05 1.915 18.73 13.79

Kasumigaura (×106) Venice (×109)

‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 L0 L1 L2 L3

ProBMoT/ALG 128.1 42.52 36.74 30.75 39.6 30.26 48.84 111.1 152.0 108.4 9.234
ProBMoT/DASA 58.54 5.836 11.78 17.86 7.295 13.58 10.47 87.09 138.2 73.17 7.608
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finds the best values. Notable exceptions are Kasumigaura ‘86 and
nd further work, we examine the possible reasons for this
utcome and formulate a new hypothesis related to this behavior
f ProBMoT/DASA.

.4. Individual Model Improvement

Fig. 8 shows the distributions of error differences between
odels fitted with DASA and with ALG for the tasks from Fig. 6.
he first box-plot in each figure represents a summary of the
ifferences of the two best models found with ALG. If these
ifferences are above zero, DASA does not miss the two best
olutions found by ALG. Next, the distributions of differences
for the 10, 100, 1000 and 10,000 (if applicable) best models
are shown. Lastly, the distribution of differences for all models
is shown. In all cases, there is a clear shift of the distribution
away from zero, which indicates that DASA overall finds bet-
ter parameter values than ALG for the same model structures.
Moreover, in the vast majority of cases, DASA manages to find
better parameter values for the model structures for which ALG
Venice 3 where DASA does not manage to find better parame-
ter values than ALG on several best structures identified by ALG.
The distributions of error differences for all tasks are given in
Appendix D.
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ig. 8. Distributions of the model-wise differences of errors between ProBMoT/ALG

. Conclusion and further work

In this paper, we presented ProBMoT, a tool for automated mod-
ling of dynamical systems. ProBMoT uses process-based models
hat consist of entities and processes for representing dynamical
ystems. It integrates domain knowledge in the form of a library
f entity and process templates. Using a conceptual model of the
ystem, the library of domain knowledge and data for a particular
ystem, it identifies both the structure and numerical parameters
f a model for the system.

One major drawback of existing automated modeling
pproaches is the use of local search methods for parameter
stimation. We  investigated the effects of substituting DASA, a
lobal search method for the previously used local search method
LG-717. For this purpose, we devised an extensive experimental
etup which addressed 21 modeling tasks for four different aquatic
cosystems.

The results conclusively show that DASA outperforms ALG-717
n all modeling tasks. Not only ProBMoT using DASA manages to
nd better models for the systems, DASA manages to find better
arameter values across the whole spectrum of model structures.
urthermore, refitting the best model structure found by ALG with
ASA yields better results in almost all cases.

Automated modeling has so far focused mostly on discov-
ring single year models of aquatic ecosystems and this is the
pproach taken in the present paper. The reason for this is that

xperiments with discovering models which hold for longer peri-
ds of time yielded poor results in earlier work. We  conjecture
hat this is largely due to the poor parameter estimation when
sing local search methods. Using global search methods opens
roBMoT/DASA. (a) Bled ‘97; (b) Glumsø ‘73; (c) Kasumigaura ‘92; (d) Venice 0.

the opportunity to tackle long term modeling of dynamical systems
with automated modeling tools.

One clue to support this lays in the error profile curves in
Appendix C. Almost without exception, ALG manages to find good
parameter values for very few model structures which can be
seen by the shape of the error profile curve which increases
rapidly at the beginning and reaches a plateau of models with
high error values afterwards. The error profile curves of DASA
instead show a plateau of models with low error values which
are equally good, and poor parameter values for very few model
structures which can be seen by the increase in error values
near the end of the curve. This means that the small data sets
used do not provide enough information to discriminate among
the different model structures. Hence, we need to use longer,
multi-year data sets, to narrow down the choice of model struc-
tures.

In further work, we will explore the avenues indicated above.
We will apply ProBMoT/DASA to construct long term models of the
dynamics of the aquatic ecosystems. We will also consider the use
of other global methods for parameter estimation, such as differ-
ential evolution and particle swarm optimization.

One useful extension of ProBMoT would be automatic recom-
mendation of suitable data sets from large data collections with
ecosystem measurements. The type of data required by ProBMoT
is directly dependent on the conceptual model that is used. The
conceptual model specifies the set of entities that appear in the

system. All exogenous variables in the entities need to be mapped
to variables in the data set. Moreover, the entities in the conceptual
model specify one or more system variables. The observed system
variables also have to be mapped to variables in the data set. How
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losely these observations are matched by the model predictions, as
easured by the objective functions, is what guides the parameter

stimation method to good solutions. The mappings of exogenous
nd observed system variables to variables in the data set are man-
ally provided by the modeler. In order to automatically infer these
appings, the data collection should be annotated with the hierar-

hy of entity templates. In particular, the variables in the data sets
hould be annotated with variables from the entity templates in the
ibrary. Thus, a software tool, given a conceptual model can deter-

ine the data sets which contain all required variables in order to
un ProBMoT. The modeler can then choose the most appropriate
ata set from this list of candidate data sets.

ppendix A. Aquatic ecosystems library

The complete knowledge library for aquatic ecosystems used in
he experiments is presented in Table 12 .

ppendix B. Simulations of the best models

The simulations of the best models found by ProBMoT/ALG and
roBMoT/DASA are presented in Figs. 9–12 .

Fig. 9 presents the simulations of the best models found on the
led domain.
Fig. 10 presents the simulations of the best models found on the
lumsø domain.

Fig. 11 presents the simulations of the best models found on the
asumigaura domain.
odelling 245 (2012) 136– 165 151

Fig. 12 presents the simulations of the best models found on the
Venice domain.

Appendix C. Error profiles

The error profiles of the models found by ProBMoT/ALG and
ProBMoT/DASA are presented in Figs. 13–16.

Fig. 13 presents the error profiles of the models found on the
Bled domain.

Fig. 14 presents the error profiles of the models found on the
Glumsø domain.

Fig. 15 presents the error profiles of the models found on the
Kasumigaura domain.

Fig. 16 presents the error profiles of the models found on the
Venice domain.

Appendix D. Distributions of the model-wise differences

The distributions of the model-wise differences between ProB-
MoT/ALG and ProBMoT/DASA are presented in Figs. 17–20.

Fig. 17 presents the distributions of the model-wise differences
on the Bled domain.

Fig. 18 presents the distributions of the model-wise differences
on the Glumsø domain.
Fig. 19 presents the distributions of the model-wise differences
on the Kasumigaura domain.

Fig. 20 presents the distributions of the model-wise differences
on the Venice domain.
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Table 12
The complete library of the domain knowledge for modeling aquatic ecosystems used for ProBMoT.

// ENTIT IES

template entit y EcosystemEntit y {
vars :

conc {aggregation: sum; unit:"kg/m ^3"; range:<0,inf>};
}

template entit y Population : Eco systemEntit y {
vars:

tempGrowthLim{aggregation:product},
tempRespLim{aggregation:product},
tempMortLim{aggregation:product},
tempExcLim{aggregation:product},
tempSedLim{aggregation:product};

}

template entit y PrimaryProduce r : Populatio n {
vars:

nutrientLim{aggregation:product},
lightLim{aggregation:product},
growthRate;

consts:
maxGrowthRate { rang e: <0.05 ,3>; unit:"1/(day)"};

}

template entit y Zooplankton : Popula tion {
vars:

phytoLim{aggregation:sum},
phytoSum{aggregation:sum};

consts:
maxFiltrationRate { range : <0. 01, 15> ; unit:"m3/(mgZoo*day)"},
assimilationCoef f { range : <0,inf> ; unit:"mgZoo/(mgAlgae)"};

}

template entit y Nutr ient : EcosystemEnt ity {
consts:

halfSaturation {range : <0,15> ; unit:"mg/l"},
alpha {range : <0,inf >; unit:"mgAlgaeBiomass/mgZooBiomass"};

}

template entit y Environmen t {
vars:

temperature,light,flow;
consts:

volume,depth,area;
}

// PROCESSES

template proces s NutrientPrimaryProducerInteraction
(pp : PrimaryProduce r, ns : Nutrient<1 , inf> , env : Environmen t ) {

processes:
LightInfluence(pp, env) , NutrientInfluence(p p, <n:ns>) , Growth(pp , ns , env) ,
RespirationPP(pp, ns, env) ;

}

// Temperatu re Growt h Influe nce

template proces s TempGrowthInfluence(po p : Populatio n, en v : Environment ) {}

template proces s NoTempGrowth Lim : TempGrowthInfluen ce {
equations:

pop.tempGrowthLi m = 1;
}

template proces s TempGrowthLim : TempGrowthInfluenc e {
consts:

refTemp { rang e: <10, 22>},
minTemp { rang e: <0, 6>},
optTemp { rang e: <15, 25>};

}

template proces s Linear1TempGrowt hLim : TempGrowthLi m {
equations:

pop.tempGrowthLi m = env.temperature/refTemp ;
}

template proces s Linear2TempGrowt hLim : TempGrowthLi m {
equations:

pop.tempGrowthLi m = (env.temperatur e - minTemp)/(refTemp - minTemp);
}

template proces s ExponentialTempGrowthL im : TempGrowthLi m {
consts:

theta { range: <1.06 , 1.13> };
equations:

pop.tempGrowthLi m = pow(th eta, env.temperatur e - refTemp) ;
}

// Temperatu re Respiratio n Influenc e

template proces s TempRespInfluence(po p : Population , en v : Environment ) {}
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Table 12 (Continued)

template proces s NoTempRespLim : TempRespInfluen ce {
equations:

pop.tempRespLi m = 1;
}

template proces s TempRespLim : TempRespInflue nce {
consts:

refTemp { rang e: <10, 22>},
minTemp { rang e: <0, 6>},
optTemp { rang e: <15, 25>};

}

template proces s Linear1TempRespL im : TempRespLi m {
equations:

pop.tempRespLi m = env.temperature/refTe mp;
}

template proces s Linear2TempRespL im : TempRespLi m {
equations:

pop.tempRespLi m = (env.temperatur e - minTemp)/(refTem p - minTemp);
}

template proces s ExponentialTempRespLi m : TempRespLi m {
consts:

theta { range: <1.06 , 1.13> };
equations:

pop.tempRespLi m = pow(theta , env.temperat ure - refTemp);
}

// Temperatu re Morta lity Influe nce

template proces s TempMortInfluence(po p : Population , en v : Environment ) {}

template proces s NoTempMortLim : TempMortInfluenc e {
equations:

pop.tempRespLi m = 1;
}

template proces s TempMortLim : TempMortInflue nce {
consts:

refTemp { rang e: <10, 22>},
minTemp { rang e: <0, 6>},
optTemp { rang e: <15, 25>};

}

template proces s Linear1TempMortL im : TempMortLi m {
equations:

pop.tempRespLi m = env.temperature/refTe mp;
}

template proces s Linear2TempMortL im : TempMortLi m {
equations:

pop.tempRespLi m = (env.temperatur e - minTemp)/(refTem p - minTemp);
}

template proces s ExponentialTempMortLi m : TempMortLi m {
consts:

theta { range: <1.06 , 1.13> };
equations:

pop.tempRespLi m = pow(theta , env.temperat ure - refTemp);
}

// Temperatu re Sedimentati on Influe nce

template proces s TempSedInfluence (pop : Populatio n, en v : Environment ) {}

template proces s NoTempSedLim : TempSedInflue nce {
equations:

pop.tempSe dLim = 1;
}

template proces s TempSe dLim : TempSedInfluenc e {
consts:

refTemp { rang e: <10, 22>},
minTemp { rang e: <0, 6>},
optTemp { rang e: <15, 25>};

}

template proces s Linear1TempSedLi m : TempSe dLim {
equations:

pop.tempSe dLim = env.temperature/refTem p;
}

template proces s Linear2TempSedLi m : TempSe dLim {
equations:

pop.tempSe dLim = (env.tempera ture - minTemp)/(refTe mp - minTemp);
}

template proces s ExponentialTempSedLi m : TempSedL im {
consts:

theta { range: <1.06 , 1.13> };
equations:

pop.tempSe dLim = pow(th eta, env.temperatu re - refTemp);
}
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Table 12 (Continued)

// Ligh t Influence

template proces s LightInfluence(p p: PrimaryProduce r, env : Environmen t) {}

template proces s NoLigh tLim : LightInfluen ce {
equations:

pp.lightLim = 1;
}

template proces s LightL im : LightInflue nce {}

template proces s MonodLightLim : LightL im {
consts:

halfSat {ran ge: <0, 200 >};
equations:

pp.lightLim = env.light / (env.light + halfSat);
}

template proces s OptimalLight Lim : LightLi m {
consts:

optLight {range : <100 , 200>};
equations:

pp.lightLim = env.light * exp( - env.li ght / optLigh t + 1) / optLight;
}

// Nutri ent Influence

template proces s NutrientInfluenc e(pp : PrimaryProduce r, n : Nutrient ) {}

template proces s NoNutrien tLim : NutrientInfluenc e {
equations:

pp.nutrientLim = 1;
}

template proces s NutrientLim : NutrientInflue nce {}

template proces s MonodNutrien tLim : NutrientL im {
equations:

pp.nutrientLim = n.conc / (n.c onc + n.halfSaturation);
}

template proces s Monod2NutrientLi m : NutrientLi m {
equations:

pp.nutrientLim = n.conc * n.co nc / (n.co nc * n.con c + n.halfSaturation);
}

template proces s ExponentialNutrientLi m : NutrientLi m {
consts:

saturationRate { range : <0, 15>};
equations:

pp.nutrientLim = 1 - exp(-saturation Rate * n.conc);
}

// Growt h

template proces s Growth (pp : PrimaryProducer , ns : Nutrient<1 , inf> , env : Environmen t) {
processes:

TempGrowthInfluence(pp, env ), GrowthRate(p p, ns , env);
equations:

td(pp.conc) = pp.growthRate * pp.conc,
td(<n:ns>.con c) = -n.al pha * pp.growthRate * pp.conc ;

}

template proces s GrowthRate(pp : PrimaryProduce r, ns : Nutrient<1 , inf> , env : Environment ) {}

template proces s LimitedGrowthRat e : Growth Rate {
equations :

pp.growthRate = pp.maxGrowthRat e * pp.tempGrowthLi m * pp.lightLi m * pp.nutrientLim;
}

// Respirati on PP
template proces s RespirationP P(pp : PrimaryProducer , ns : Nutrient<1 , inf >, env : Environmen t) {}

template proces s ExponentialRespiration PP : RespirationP P {
consts:

respRate {range : <0.000 1, 2>};
equations:

td(pp.conc) = -respRate * pp.conc,
td(<n:ns>.con c) = respR ate * pp.conc ;

}

template proces s TempRespirationP P : Respiration PP {
processes:

TempRespInfluence(pp, env);
}

template proces s Temp1Respiration PP : TempRespirationP P {
consts:

respRate {range : <0.000 1, 1>};
equations:

td(pp.conc) = -respRate * pp.c onc * pp.tempRespLim,
td(<n:ns>.con c) = respR ate * pp.conc * pp.tempRespLim;

}
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Table 12 (Continued)

template proces s Temp2Respiration PP : TempRespirationP P {
consts:

respRate {range : <0.000 1, 1>};
equations:

td(pp.conc) = -respRate * pp.c onc * pp.c onc * pp.tempRespLim,
td(<n:ns>.con c) = respR ate * pp.conc * pp.conc * pp.tempRespLim;

}

// Morta lity PP

template proces s MortalityPP( pp : PrimaryProduce r, en v : Environment ) {
processes:

TempMortInfluence(pp, env);
}

template proces s ExponentialMortalityP P : MortalityP P {
consts:

mortRate {range : <0.000 1, 2>};
equations:

td(pp.conc) = -mortRate * pp.conc;
}

template proces s TempMortalit yPP : Mortalit yPP {
consts:

mortRate {range : <0.000 1, 2>};
equations:

td(pp.conc) = -mortRate * pp.c onc * pp.tempMortLim;
}

template proces s Temp2Mortali tyPP : Mortality PP {
consts:

mortRate {range : <0.000 1, 2>};
equations:

td(pp.conc) = -mortRate * pp.c onc * pp.c onc * pp.tempMortLim;
}

// Fee ds On
template proces s FeedsOn(zoo:Zooplankto n, pps:PrimaryProducer<1,inf> , env : Environment){

processes :
TempGrowthInfluence(zoo, env) , PhytoLim(zo o, pps);

}

template proces s FeedsOnFiltration : FeedsOn{
equations :

td(zoo.conc) = zoo.assimilationCo eff * zoo.maxFiltrationRate * zoo.tempGrowthLim
* zoo.conc * zoo.phyto Sum * zoo.phytoL im,
td(<pp:pps>.conc) = - zoo.maxFiltrationRa te * zoo.tempGrowthLi m * zoo.conc
* pp.conc * zoo.phytoLim ;

}

template proces s PhytoLim(zoo : Zooplankto n, pps : PrimaryProducer<1,inf> ) {}

template proces s NoPhyt oLim : PhytoL im {
equations:

zoo.phytoL im = 1;
}

template proces s MonodPhytoLim : PhytoL im {
consts:

halfSaturation {range : <0, 20 > };
processes:

Summation(zoo, pps);
equations:

zoo.phytoL im = zoo.phytoSum / (halfSaturatio n+ zoo.phytoSum);
}

template proces s Monod2PhytoL im : Phyto Lim {
consts:

halfSaturation {range : <0, 20 > };
processes:

Summation(zoo, pps);
equations:

zoo.phytoL im = zoo.phyt oSum * zoo.phyto Sum / (zoo.phytoSum * zoo.phytoSum + halfSaturation);
}

template proces s ExponentialPhyto Lim : Phyt oLim {
consts:

saturationRate {range : <0, 5> };
processes:

Summation(zoo, pps);
equations:

zoo.phytoL im = 1 - exp(-saturationRa te * zoo.phytoSum);
}

template proces s Summation (zoo : Zooplankton , pp s: PrimaryProducer<1,inf> ) {
equations:

zoo.phytoS um = <pp:pps>.co nc;
}

template proces s Sedimentation(po p : Population , env : Environment ) {
processes:

TempSedInfluence(pop, env);
consts:

sedimentationRate { range : <0. 0001, 0.5> ; unit:"1/(day)"};

equations:
td(pop.conc) = -(sedimentationRa te / env.depth ) * pop.conc * pop.tempSedLim;

}
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Fig. 10. Simulations of the best models found by ProBMoT/ALG and ProBMoT/DASA for each task for the Glumsø domain. (a) Glumsø ‘73 and (b) Glumsø ‘74.
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Fig. 11. Simulations of the best models found by ProBMoT/ALG and ProBMoT/DASA for each task for the Kasumigaura domain. (a) Kasumigaura ‘86; (b) Kasumigaura ‘87; (c)
Kasumigaura ‘88; (d) Kasumigaura ‘89; (e) Kasumigaura ‘90; (f) Kasumigaura ‘91; (g) Kasumigaura ‘92.
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Fig. 11. ( Continued ).
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Fig. 12. Simulations of the best models found by ProBMoT/ALG and ProBMoT/DASA for each task for the Venice domain. (a) Venice Loc. 0; (b) Venice Loc. 1; (c) Venice Loc.
2;  (d) Venice Loc. 3.
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Fig. 13. Error profiles for ProBMoT/ALG and ProBMoT/DASA on all automated modeling tasks for the Bled domain. (a) Bled ‘95; (b) Bled ‘96; (c) Bled ‘97; (d) Bled ‘98; (e) Bled
‘99;  (f) Bled ‘00; (g) Bled ‘01; (h) Bled ‘02.
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Fig. 14. Error profiles for ProBMoT/ALG and ProBMoT/DASA on all automated modeling tasks for the Glumsø domain. (a) Glumsø ‘73 and (b) Glumsø ‘74.
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Fig. 15. Error profiles for ProBMoT/ALG and ProBMoT/DASA on all automated modeling tasks for the Kasumigaura domain. (a) Kasumigaura ‘86; (b) Kasumigaura ‘87; (c)
Kasumigaura ‘88; (d) Kasumigaura ‘89; (e) Kasumigaura ‘90; (f) Kasumigaura ‘91; (g) Kasumigaura ‘92.
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Fig. 15. ( Continued ).
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Fig. 16. Error profiles for ProBMoT/ALG and ProBMoT/DASA on all automated modeling tasks for the Venice domain. (a) Venice Loc. 0; (b) Venice Loc. 1; (c) Venice Loc. 2; (d)
Venice  Loc. 3.
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Fig. 17. Distribution of the model-wise differences of RMSE between ProBMoT/ALG and ProBMoT/DASA for all automated modeling tasks for the Bled domain. (a) Bled ‘95;
(b)  Bled ‘96; (c) Bled ‘97; (d) Bled ‘98; (e) Bled ‘99; (f) Bled ‘00; (g) Bled ‘01; (h) Bled ‘02.
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Fig. 18. Distribution of the model-wise differences of RMSE between ProBMoT/ALG and ProBMoT/DASA for all automated modeling tasks for the Glumsø domain. (a) Glumsø
‘73  and (b) Glumsø ‘74.
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Fig. 19. Distribution of the model-wise differences of RMSE between ProBMoT/ALG and ProBMoT/DASA for all automated modeling tasks for the Kasumigaura domain. (a)
Kasumigaura ‘86; (b) Kasumigaura ‘87; (c) Kasumigaura ‘88; (d) Kasumigaura ‘89; (e) Kasumigaura ‘90; (f) Kasumigaura ‘91; (g) Kasumigaura ‘92.
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Fig. 19. ( Continued )

Fig. 20. Distribution of the model-wise differences of RMSE between ProBMoT/ALG and ProBMoT/DASA for all automated modeling tasks for the Venice domain. (a) Venice
Loc.  0; (b) Venice Loc. 1; (c) Venice Loc. 2; (d) Venice Loc. 3.
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