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a b s t r a c t

Process-based modeling is an approach to learning understandable, explanatory models of dynamic systems

from domain knowledge and data. Although their utility has been proven on many tasks of modeling dy-

namic systems in various domains, their ability to accurately predict the future behavior of an observed

system is limited. To address this limitation, we propose the use of a standard approach to improving the

predictive performance of machine learning methods, i.e., the approach of learning ensemble models. Previ-

ous work on ensembles of process-based models has been limited to proof-of-principle experiments with a

single ensemble method (bagging) and in the limited perspective of explaining the currently observed system

behavior v.s. predicting future system behavior. In this paper, we design a general methodology for adapting

ensemble methods to the context of process-based modeling. Using the methodology, we implement the

two approaches bagging and boosting of process-based models. We perform an empirical evaluation of the

implemented methods on three real-world modeling problems from the domain of population dynamics in

aquatic ecosystems. The results of the empirical evaluation show that ensembles of process-based models

can lead to long-term predictions of the population dynamics that are more accurate than the ones obtained

with a single process-based model.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical models are employed to provide an understanding

of the laws that govern the behavior of dynamic systems. More specif-

ically, such models are being utilized to recreate or simulate the be-

havior of dynamic systems under various conditions. This paper ad-

dresses the task of automated modeling of dynamic systems from

time-series data and domain-specific modeling knowledge. The re-

sult of which is a process-based model that both explains the struc-

ture of the modeled system and allows for simulation of its behavior

(Todorovski & Džeroski, 2007). For simulation, process-based models

are transformed to systems of ordinary differential equations (ODEs),

a widely accepted formalism for modeling dynamic systems. ODEs

allow for long-term simulation of the system behavior given only

its state at the initial time point and the time series corresponding

to the input control variables. Models that allow for accurate long-

term prediction of system behavior are typically hand-crafted by en-
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ineers and experts in the domain at hand. The process-based model-

ng approach allows for automated learning of such models in differ-

nt domains (Atanasova, Recknagel, Todorovski, Džeroski, & Kompare,

006a; Atanasova et al., 2006c; Taškova, Šilc, Atanasova, & Džeroski,

012).

However, existing approaches to process-based modeling mostly

ocus on building descriptive models that explain the observed be-

avior of the system, however do not generalize well enough to pre-

ict future system behavior (Simidjievski, Todorovski, & Džeroski,

015). Improving the predictive performance of process-based mod-

ls is still a challenge. In this paper, we address this challenge by

roposing ensembles of such models. This is a standard approach for

mproving the predictive performance of models in machine learning

ietterich (2000). An ensemble is a set of models, referred to as base

odels or ensemble constituents; its prediction is a combination of

he predictions obtained with the individual ensemble constituents.

hey are usually employed in the context of supervised learning tasks

f classification (Smith et al., 2015) and regression (King, Abrahams,

Ragsdale, 2014; Tay, Chui, Ong, & Ng, 2013) to address the prob-

ems of over-fitting, high dimensionality, or missing features in the

raining data, resulting in predictive performance gain as compared

o that of a single model. While regression ensembles can be also used

s models for time-series forecasting (Ma, Dai, & Liu, 2015), they have
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o far been used to make short-term predictions, i.e., predict only the

alues of the system variables in immediate future and not the long-

erm system behavior.

The main motivation for the work presented in this paper is to im-

rove the accuracy of long-term predictions of process-based mod-

ls. To this end, our specific objective is to design and implement

ethods for learning ensembles of process-based models from data

nd knowledge. We conjecture that ensembles learned using the im-

lemented methods will outperform single process-based models in

erms of their accuracy/error of long-term prediction of system be-

avior. To test the validity of this conjecture, we perform an extensive

valuation of the implemented methods on the task of modeling and

redicting population dynamics in aquatic ecosystems. The empiri-

al evaluation allows us to decide between the ensemble methods of

agging (Breiman, 1996a) and boosting (Drucker, 1997; Freund, 1999)

s well as design alternatives considered within this methods.

The remainder of the paper is organized as follows. In Section 2,

e put our work in the context of related work on process-based

odeling and ensemble learning. Section 3 provides an introduction

o the process-based modeling paradigm and its specific implemen-

ation PRoBMoT (Čerepnalkoski, Taškova, Todorovski, Atanasova, &

žeroski, 2012) through an example modeling task from the domain

f population dynamics in aquatic ecosystems. Section 4 presents

he two methods we propose and their implementation as an exten-

ion to PRoBMoT for learning ensembles of process-based models. In

ection 5, we present the experimental setup of the empirical frame-

ork for evaluating the developed methods on three tasks of model-

ng population dynamics in aquatic ecosystems. More specifically, we

est the utility of ensembles of process-based models in the context of

odeling three ecosystems: Lake Bled in Slovenia, Lake Kasumigaura

n Japan, and Lake Zurich in Switzerland. Section 6 presents the re-

ults of the empirical evaluation and discusses them in the context of

elated research. Finally, Section 7 concludes this paper and suggests

irections for further work.

. Related work

The work presented in this paper extends the state-of-the-art of

rocess-based modeling (Bridewell, Langley, Todorovski, & Džeroski,

008; Todorovski & Džeroski, 2007). More specifically, it relates to

revious work on process-based modeling that has proven success-

ul for building descriptive models of population dynamics in a num-

er of real-world aquatic ecosystems (Atanasova et al., 2006a, 2006c;

žeroski & Todorovski, 2003). These studies focus on descriptive

odels used to explain the observed behavior of the system at hand

nd not (so far) employed for predicting future (unobserved) system

ehavior. Simidjievski et al. (2015) present a proof-of-principle ex-

eriment and show that bagging process-based models can improve

heir predictive performance. However, this experiment is of limited

cope since it does not consider alternative ensemble methods, such

s boosting, which is considered here. The study presented there is

urely empirical and does not tackle the methodological issues of

earning ensembles that are being addressed in this paper.

The task of learning ensembles of process-based models has been

lso addressed by Bridewell, Asadi, Langley, and Todorovski (2005),

ho aim at integrating the ensemble constituents into a single (meta-

evel) process-based model that includes the structure fragments

ost frequently present in the constituents. The results show that

he resulting meta-level model is more robust in terms of over-fitting

o the observed data. Note however, that in the evaluation their pro-

osed approach, the authors estimate the out-of-sample error by tak-

ng random sub-samples of the observed (training) time-series data.

he ability of the meta-level model to predict system behavior out-

ide the observed time span of the training data (i.e., future system

ehavior), which we focus on in this paper, has not been considered,

ar less evaluated.
On the other hand, our work is related to the long tradition

f applying methods for learning ensembles to various predictive

odeling tasks in different scientific and engineering domains.

he ensemble methods that tackle the problem of time-series

orecasting are most closely related. (Ma et al., 2015) present a

ethod for pruning the set of ensemble constituents, in particular

upport-vector regression models, for the purpose of optimizing the

ize of an ensemble and its predictive performance. They apply the

eveloped method to four tasks of forecasting financial time-series

stock indices) and show that the approach can reduce ensemble size

hile retaining reasonable levels of predictive accuracy. Similarly,

ourentzes, Barrow, and Crone (2014) also aim at short-term fore-

asting of financial time series using ensembles of neural networks.

heir main contribution is the identification of the most suitable

perator for aggregating the predictions of individual ensemble

onstituents. Note that all the forecasting tasks, considered in these

wo papers, are short-term since they aim at forecasting the next-

ime-point values of stock indices or retail prices. In contrast, our

rocess-based models aim at long-term (typically one year) predic-

ion that concern periods with potentially indefinite ranges of time

oints.

Finally, process-based modeling is a term frequently used in the

ealm of system analytics and modeling business processes. Recently,

here has been interest in automatic building of enactment plans re-

ated to the same declarative specification of a given business process

Jiménez, Barba, del Valle, & Weber, 2013). Business process model-

ng formalisms follow the standard specification languages, such as

PMN (White, 2004), designed for the specific purpose of specify-

ng declarative models of business processes that can be used for un-

erstanding, simulating and optimizing business processes. However,

he business process models are quite different from the process-

ased models considered here that provide means for a mathemat-

cal formalization of the quantitative change of the observed sys-

em state through time. Our process-based models are thus based

n an entirely different formalism that we will introduce in the next

ection.

. Process-based modeling

Complex models are derived with the express purpose to recreate

he observed behavior or simulate the subsequent states of a dynamic

ystem under various conditions. Scientist and engineers often relate

uch models to the processes that govern the dynamics of the mod-

led system, and to the entities involved. These relations are com-

only construed with equation-based specifications of the dynam-

cs, and compiled into a set of ordinary differential and/or algebraic

quations. The set of equations describes the change of the system’s

tate over time and therefore is used to simulate past, present and

uture behavior of the system at hand. However, while equations of-

er a quantitative way of expressing models, they lack the ability to

ualitatively express the structure of the modeled system in terms of

nteracting entities and processes.

The approach of process-based modeling of dynamic systems

ims at constructing models which contain a high-level explanatory

tructure and a low-level mathematical formulation which allow-

ng for making predictions. Process-based models integrate domain-

pecific modeling knowledge and data into explanatory models of the

bserved systems. A process-based model consists of two basic types

f elements: entities and processes. Entities represent the state of the

ystem. They incorporate the input variables (forcing terms of the sys-

em), state variables (the internal state of the system) and the con-

tants related to the components of the modeled system. The entities

re involved in complex interactions represented by the processes.

he processes include specific details of how the entities interact in

erms of equations and sub-processes.
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Fig. 1. Graphical representation of the relations (arrows and black boxes) between the

entities (oval transparent boxes) in a simple lake ecosystem.
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The task of process-based modeling, or learning process-based

models from knowledge and data, can be specified, in terms of its

inputs and outputs, as follows:

Input

– Measured data of the variables in the observed system.

– Domain-specific modeling knowledge.

Output

– Process-based model of the observed system.

The measured values of the observed variables are continuous, con-

tiguous and may be non-uniformly distributed. We are interested in

models that can predict the behavior of the system, i.e., how its state

changes over time. Since, the state is represented by continuous vari-

ables, the task at hand resembles the task of regression.

Regression models, applied in the context of time-series data,

are typically used for short-term prediction of the state at the next

time point, based on the observed values of the current and previ-

ous states. In contrast, differential equations provide long-term pre-

dictions over many following time points, based only on the initial

values of the target variables; no observations are necessary at the

intermediate time points. Note also, that the use of modeling knowl-

edge is an advantage of the process-based modeling approach over

regression approaches since it improves model interpretability. The

process-based models upgrade the purely empirical approaches, and

strive at explaining how and why the dynamic system behaves under

various conditions as opposed to just explaining/predicting how the

measurements vary.

In the continuation of this section we are going to explain in more

detail the process-based modeling paradigm through the prism of

process-based models and the process of their learning from knowl-

edge and data. To properly asses the relevant details of the paradigm,

we are going to illustrate its use on a simple example of modeling

population dynamics in an aquatic ecosystems.

3.1. Process-based models and modeling knowledge

Models of aquatic ecosystems are required for better under-

standing, prediction and management of such systems (Jørgensen

& Bendoricchio, 2001). These models target the relations between

entities, i.e., nutrients, primary producers, animals and environmen-

tal changes, that typically occur in aquatic ecosystems (Luenberger,

1979). Fig. 1 depicts a cyclic relationship involving a primary pro-

ducer (phytoplankton, abbreviated as phyto) that grows by feeding on

nutrients (nitrogen and phosphorous), the concentrations of which

are influenced by the environment and the process of phytoplankton

respiration (Atanasova, Todorovski, Džeroski, & Kompare, 2006b).

In order to model such a system using the process-based

paradigm, we first need to formalize the modeling knowledge.

Process-based modeling allows for a high-level representation of
nowledge, cataloged in a domain-specific library of entity and pro-

ess templates. The templates embody general properties of the in-

eractions that govern the dynamics in the domain at hand and serve

s recipes for establishing specific entities and processes observed in

given system.

Table 1 depicts an example of a simple library for modeling popu-

ation dynamics in aquatic ecosystems. The first four declarations cor-

espond to template entities organized in a hierarchy. The template

ntities of EcosystemEntity and Environment are at the top

f the hierarchy; the first corresponds to the entities of the aquatic

cosystem, while the second to its environment. Down the hierarchy,

he EcosystemEntity is then specialized into the two template

ntities of PrimaryProducer and Nutrient.

Each entity template may include constant and variable prop-

rties, which are inherited down the hierarchy. The variable prop-

rties (denoted vars) are those which change over time: the

cosystemEntity has as variable property its current concen-

ration (denoted conc). Similarly, the Environment entity in-

ludes the temperature variable. The constant properties that

o not change are denoted with consts, e.g., the template entity

rimaryProducer has the constant property maxGrowthRate.

inally, note that each variable property can have an aggregation

unction (denoted aggregation) that specifies how multiple influ-

nces on the variable (originating from different processes) are com-

ined: the influences on the conc variable of EcosystemEntity
re summed up, while the influences on the growthRate variable

re multiplied.

The template processes are also organized in a hierarchy and

pecify which entities can interact and how these interactions

overn the dynamics of entity variables. Highest in the hierarchy

f aquatic ecosystem processes are the templates of Growth,

espiration and GrowthRate. The Respiration template

pecifies two differential equations that model the influence of the

espiration process on the concentrations of the primary producer

nd the nutrients involved. Similarly, the Growth template encodes

he influences of growth on the same concentrations. Addition-

lly, Growth involves a subprocess GrowthRate, which implies

hat a GrowthRate must be specified for each nutrient involved

n the process of growth. The hierarchy specifies two instances

f the template process GrowhRate, MonodGrowthRate and

xpSaturatedGrowthRate, that correspond to two alternative

odels of growth limitation due to limited nutrient supply. Note

herefore, the hierarchical structure of the process templates al-

ows for the specification of modeling alternatives for an observed

nteraction between entities.

Once we have a library of process and entity templates, we can

ormulate a process-based model as a set of instances of the tem-

lates in the library. Table 2 presents a process-based model of the

ystem depicted in Fig. 1: note the one-to-one correspondence be-

ween entities and process depicted in the system graphical pre-

entation and the process-based model. Each entity and process in-

tance incorporate the variables and the constants related to the

orresponding template. For each variable property, its role in the

bserved system is specified. Exogenous variables represent input

ystem variables that are not the subject of modeling (e.g., the en-

ironment temperature), while endogenous variable represent sys-

em state variables that are subject to modeling (e.g., the concen-

ration of phytoplankton). For each endogenous variable, we have

o provide its value at the initial time point. Finally, for the con-

tant properties of the entities and processes, we have to specify their

alues.

Considering the mathematical formulation of the processes em-

odied in the library, we can compile this high-level representa-

ion of the interactions in the system into a system of algebraic

nd differential equations adequate for simulation. Table 3 provides

he quantitative formulation of the process-based model presented
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Table 1

Template entities and processes for modeling population dynamics in aquatic ecosystems. Here

td(x) denotes the time derivative of x.

template entity EcosystemEntity {
vars:conc {aggregation:sum ;}}

template entity PrimaryProducer :EcosystemEntity {
vars:growthRate {aggregation:product };
consts:maxGrowthRate ; }

template entity Nutrient :EcosystemEntity {consts:alpha;}
template entity Environment {vars:temperature ;}
template process Growth(pp :PrimaryProducer ,ns :Nutrients ){

processes:GrowthRate(pp ,ns );
equations:

td(pp.conc) = pp.maxGrowthRate ∗ pp.growthRate ∗ pp.conc,

td(ns.conc) = −n.alpha ∗ pp.maxGrowthRate ∗ pp.growthRate ∗ pp.conc; }

template process Respiration(
pp :PrimaryProducer ,ns :Nutrients ,env :Environment ){

consts:respRate ,refTemp ,minTemp ;
equations:

td(pp.conc) = −respRate ∗ pp.conc ∗ pp.conc

∗(env.temperature-minTemp)/(refTemp-minTemp),

td(ns.conc) = respRate ∗ pp.conc ∗ pp.conc

∗(env.temperature-minTemp)/(refTemp-minTemp); }

template process GrowthRate(pp :PrimaryProducer ,n :Nutrient ){}
template process MonodGrowthRate:GrowthRate{

consts:halfSaturation ;
equations:

pp.growthRate = n.conc/(n.conc + halfSaturation);}

template process ExpSaturatedGrowthRate:GrowthRate{
consts:saturationRate ;
equations:

pp.growthRate = 1 − exp( − saturationRate ∗ n.conc);}

Table 2

A process-based model of phytoplankton dynamics in the simple a lake ecosystem from

Fig. 1, based on the template entities and processes from the library in Table 1.

//Entities
entity phyto :PrimaryProducer {

vars:conc {role:endogenous ; initial: 1.665;};
consts:maxGrowthRate= 0.88;}

entity phos :Nutrient {
vars:conc {role:exogenous ;};}

entity nitro :Nutrient {
vars:conc {role:exogenous ;};}

entity env :Environment {
vars:temp {role:exogenous ;};}

//Processes
process growth(phyto, [phos, nitro]):Growth

{ processes:growthRate;}
process nitrogenLim(phyto ,nitro ):ExpSaturatedGrowthRate

{ consts:saturationRate=14.9;}
process phosophorousLim(phyto ,phos ):ExpSaturatedGrowthRate

{ consts:saturationRate=8.08;}
process respiration(phyto , [phos ,nitro ],env ):Respiration

{ consts:respRate=0.036,minTemp=0.542,refTemp=17.4;}

Table 3

Ordinary differential equations obtained from the process-based model of phytoplankton dynamics pre-

sented in Table 2. Here td(x) denotes the time derivative of x.

phyto.growthRate = [1 − exp ( − 8.08 ∗ phos.conc)] ∗ [1 − exp ( − 14.9 ∗ nitro.conc)]

td(phyto.conc) = 0.88 ∗ phyto.conc ∗ phyto.growthRate − phyto.conc2 ∗ 0.036 ∗ env.temp − 0.542
env.temp − 17.4

phyto.conc(t0) = 1.665
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bove. Since we are modeling just the concentration of phytoplank-

on (which is denoted as endogenous in Table 2) the system of equa-

ions consists of a single differential equation. This equation can

e then simulated, thus generating a trajectory and utilizing it for

urther analysis. Fig. 2 shows the simulation of phytoplankton con-

entration obtained by using the process-based model. The data tra-

ectory (represented by a dashed line) represents real measurements

hat can be used for a visual assessment of the process-based model

erformance.
In summary, process-based models have several characteristics

hich make them very efficient for tasks of modeling dynamic sys-

ems. First, they provide a conceptual representation of the structure

f the modeled system, depicting the high-level relations (processes)

etween the system components (entities). Second, they allow for

he high-level process-based representation to be translated into a

ow-level mathematical formalism depicted as a set of differential

nd/or algebraic equations, facilitating simulation of the systems

ehavior. Finally, the library of domain-specific knowledge allows for
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Fig. 2. Simulation of phytoplankton concentration dynamics (solid line) as modeled

with the process-based model from Table 2 and its comparison to observed phyto-

plankton concentration (dashed line).

Algorithm 1 Outline of the generic algorithm for learning process-

based models from knowledge and data.

1: function PBM(library, data, incompleteModel)

2: components ← instantiate(library, incompleteModel)

3: for each (structure ∈ enumerate(components,

incompleteModel)

do

4: modelEq ← compileToEquation(strucutre)

5: (model, error) ← parameterEstimation(modelEq, data)

6: modelList ← modelList
⋃

(model, error)
7: end for

8: return sort(modelList, error)

9: end function
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1 Available at http://probmot.ijs.si.
instantiation of a number of different building blocks for generating

process-based models (Bridewell et al., 2008), which is particularly

relevant for algorithms tackling the task of automated learning of

process-based models from data.

3.2. Learning process-based models

Given the library of model fragments (template entities and pro-

cesses), we can now formulate the task of learning process-based

models from knowledge and data as a search task. Namely, given the

specific entities in the observed system at hand, one can instantiate

the template processes from the library into a set of specific processes

that can be considered for inclusion in the model of the observed sys-

tem. In turn, based on this set of specific model components, we can

specify the search space of combinations thereof. Some of the com-

binations can be rejected as implausible, due to further modeling as-

sumptions made by the user, such as the presence or absence of cer-

tain processes in the model.

The process-based modeling (PBM) algorithm, outlined in

Algorithm 1, first takes as input library of domain-specific modeling

knowledge, followed by data in form of time-series measurements

of the observed dynamic system. The last input to the algorithm is

an incompleteModel representing the modeling assumptions made

by the modeler. First, the algorithm assembles all theoretically

plausible model components by binding the entities of the observed

system to the template processes from the library. Next, based on

the incomplete model (taking into account the assumptions), the

algorithm enumerates all the plausible candidate model structures.

Each of these high-level structures is then compiled into a system

of equations eligible for simulation. Before simulation, however, a

parameter estimation task is being solved for the model structure at
and, to obtain values of the model parameters that best fit the ob-

erved data. After estimating the parameters for all candidate model

tructures, the algorithm outputs a sorted list of process-based

odels according to their error on training data, i.e., the discrepancy

etween the model simulation and the observed system behavior.

Most process-based modeling algorithms perform exhaustive

earch through a constrained space of candidate process-based struc-

ures, limiting the number of processes in the model (Bridewell

t al., 2008). The more advanced approaches, such as Lagramge2.0

Todorovski & Džeroski, 2007), combine the library of knowledge

nd the constraints into a grammar for enumerating plausible model

tructures. HIPM (Todorovski, Bridewell, Shiran, & Langley, 2005) al-

ows for more sophisticated hierarchical constraints on the legal pro-

ess combinations and tackles enumeration of model structures as a

ombinatorial problem. Last, ProBMoT (Čerepnalkoski et al., 2012) is a

oftware platform for complete modeling, parameter estimation, and

imulation of process-based models. It extends HIPM with explicit

onstraints (assumptions) for a particular domain at hand and em-

loys a variety of meta-heuristic optimization methods. In this study,

e use ProBMoT1 as the base learning algorithm for learning con-

tituents of ensembles of process-based models.

. Ensembles of process-based models

Ensembles are commonly used for machine learning tasks, such

s classification and regression (Maclin & Opitz, 1999; Rokach, 2010).

owever, a detailed layout of a methodology for learning ensembles

f process-based models for predictive tasks has not been consid-

red so far. Here we take note of the similarity between the tasks

f process-based modeling and time-series regression, and we apply

he idea of learning ensembles of regression models in the context of

odels of dynamic systems, that is, developing appropriate methods

or learning ensembles of process-based models.

An ensemble is a set of models (referred to as base models or en-

emble constituents) that is expected to have improved predictive

erformance compared to a single model. The idea behind ensembles

s to maximize the overall predictive power by combing the predic-

ions of the individual base models. The simplest form of an ensemble

s a black-box. For a given “bag” of individual models, the resulting

utput is a combination of the individual predictions. For this rea-

on, we first explore how an ensemble of process-based models can

e simulated and how the resulting prediction can be interpreted.

ext, we “open” the black-box, and investigate the different methods

or learning the constituents of an ensemble, where we introduce a

ovel approach of learning ensembles of process-based models.

.1. Simulating ensembles of PBMs

In order to simulate an ensemble, each base model needs to be

imulated. The resulting ensemble output is a combination of the pre-

ictions of all individual base models. For obtaining a prediction for

nsembles of process-based models, we use average, weighted aver-

ge and weighted median as combining schemes, commonly used for

egression tasks (Drucker, 1997).

In all cases, the real-valued predictions of the constituent models

re combined per time-point, for each time-point separately. In the

ase of average, all base models participate in the resulting simulation

quivalently. For weighted average and weighted median schemes,

confidence β is calculated for each of the base models based on

heir performance error. The base models with higher confidence will

ontribute more in the resulting ensemble simulation. The procedure

or simulating an ensemble of PBMs is depicted in Algorithm 2.

The simulateEnsemble() procedure takes as input: a set of

rocess-based models denoted with ensemble, the library of domain

http://probmot.ijs.si
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Algorithm 2 Simulating ensembles of process-based models.

1: function simulateEnsemble(ensemble, lib, D, scheme) returns

ŷe

2: Simulations ← ∅ � simulations from ensemble constituents

3: ŷe ← ∅ � ŷe: the resulting ensemble simulation

4: for each {model, β} ∈ ensemble do

5: ŷ ← simulate(model, D)

6: if inrange(ŷ, lib) then

7: Simulations ← Simulations
⋃{ŷ, β}

8: else continue

9: end if

10: end for

11: if scheme = average then

12: ŷe ← average(Simulations)

13: else if scheme = weightedAverage then

14: ŷe ← weightedAverage(Simulations)

15: else

16: ŷe ← weightedMedian(Simulations)

17: end if

18: end function
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Algorithm 3 Bagging process-based models.

1: procedure Bagging(lib, {DT , DV }, incompleteModel, k)

2: returns Ensemble

3: Ensemble ← ∅ � set of base models

4: for i = 1 to k do

5: DS ← sample(DT ) � randomly sample the training set DT

6: modelListi ← probmot(lib, DS, incompleteModel)

7: bestModeli ← rank(modelListi, DV )

8: βi ←confidence(bestModeli, DV )

9: Ensemble ← Ensemble
⋃

(bestModeli, βi)
10: end for

11: end procedure

12:

13: function confidence(model, D) returns β
14: let ŷ � simulated system variable y

15: let y � measured system variable y

16: ŷ ←simulate(model, D)

17: maxDisc ← sup (|yt − ŷt |)2 � calculate max discrep-

ancy between measure-

ments y and simulation

ŷ, where t = 0..N and N is

number of time-points in

D

18: L̄ ←
N∑

t=0

|yt − ŷt |2

maxDisc
� calculate average loss

19: β ← L̄

1 − L̄
� calculate confidence

20: end function
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A

o

nowledge lib, a data set D and a label scheme selecting the combina-

ion scheme used. The resulting prediction of the ensemble is a tra-

ectory denoted with ŷe. First, each model from the set is simulated.

he result of the prediction of a individual model for a data set D is a

rajectory ŷ. Each model is accompanied with a confidence β , calcu-

ated based on the performance on a validation data set. We use this

oefficient β in the weighted combining schemes. The pairs of tra-

ectories and confidences {ŷ, β} resulting from the simulation of the

onstituents in the ensemble is collected in the set Simulations.

In contrast to the task of obtaining an output from a regression

odel, where the resulting prediction is a single point for a given

nput, the task of predicting with process-based models is far more

hallenging. The simulation of a process-based model takes as

nput the initial values of the endogenous variables and the com-

lete trajectories of the exogenous (forcing) variables. As output,

t produces complete trajectories of the endogenous variables. In a

redictive scenario, this can often lead to divergent trajectories and

isastrous predictive misperformance. For this reason, we examine

he simulated values of each prediction ŷ whether they satisfy the

ange of constraints given in the library of background know-

edge (line 6 in Algorithm 2). If a value from a prediction is outside

he range specified in the library, the whole trajectory of that particu-

ar model is discarded, i.e., is not taken into account when calculating

he resulting ensemble prediction. In this paper, we use this kind of

ynamic ensemble pruning as a standard technique when selecting

he ensemble constituents and simulating the ensemble prediction.

inally, the valid simulations (Simulations) along with the respective

onfidence βv are combined in the resulting ensemble prediction.

.2. Learning the constituents of an ensemble of PBMs

Theoretically, ensemble methods consist of two main compo-

ents: a technique for learning a set of candidate base models, and

combining scheme specifying how the base model predictions are

eing aggregated into an ensemble prediction. Previously, we demon-

trated how the base models are combined into an ensemble of

rocess-based models. Here we focus on the methods for learning

he ensemble constituents.

Based on how the constituents are learned, the ensembles can

e homogeneous or heterogeneous. In homogeneous ensembles, the

ase models are learned with the same learning algorithm, but using

ifferent samples of the training data, where the sampling variants

nclude: sampling of data instances as in bagging (Breiman, 1996a)
nd boosting (Freund, 1999); sampling of data features/attributes

s in random subspaces (Ho, 1998); or both as in random forests

Breiman, 2001). On the other hand, in heterogeneous ensembles,

he candidate base models are learned using different learning algo-

ithms, possibly together with a combination function as in stacking

Wolpert, 1992).

Bagging (Bootstrap aggregation), developed by Breiman (1996a),

s one of the first and simplest ensemble learning methods. This

ethod uses bootstrap sampling with aggregation. First, randomly

ampled data instances, with replacements, from the training set are

sed to obtain bootstrap replicates. Next, each base model is learned

rom a different bootstrap replicate.

Boosting refers to a general approach for obtaining an accurate

rediction by combining several less accurate ones learned on a dif-

erent distributions of the training data. The AdaBoost algorithm, pro-

osed by Freund and Schapire (1997), is an implementation of the

oosting approach for the task of classification. AdaBoost works iter-

tively; it uses different distributions of the training data for learn-

ng the base models at each iteration. Depending on the outcome

f the past iteration this method decreases (for correct classifica-

ion)/increases (for incorrect classification) the weights of every in-

tance, thus changing the distribution for the subsequent iteration of

raining the model. In this way, the individual weak predictors fo-

us on different instances, and their combination is more robust. In

similar fashion, the implementation of Drucker (1997) successfully

ackles the problem of combining regressors using AdaBoost.

In the reminder of this section, we will describe the process of

enerating ensembles of PBMs, and identify the key design princi-

les for extending the two methods outlined above (bagging and Ad-

boost) to learn ensembles of PBMs.

.2.1. Bagging of PBMs

The procedure for bagging process-based models is presented in

lgorithm 3. The procedure Bagging() takes four inputs: a library

f domain knowledge lib, data consisting of training data D and
T
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Algorithm 4 Boosting process-based models.

1: procedure Boosting(lib, {DT , DV }, incompleteModel, k)

2: returns Ensemble

3: Ensemble ← ∅ � set of base models

4: ωt ← 1 � ωt is the weight of time

point t , where t = 0..N

and N is the number of

measurements in DT
5: for i = 1 to k do

6: modelListi ← probmot(lib, {DT ,ω}, incompleteModel)

7: bestModeli ← rank(modelListi, DV )

8: βi ←confidence(bestModeli, DV )

9: Ensemble ← Ensemble
⋃

(bestModeli, βi)
10: ω ← reweight(modeli, DT ,ω)

11: end for

12: end procedure

13:

14: function reweight(model, D,ω) returns ω
15: let ŷ � simulated system variable y

16: let y � measured system variable y

17: ŷ ←simulate(model, D)

18: maxDisc ← sup (|yt − ŷt |)2 � calculate max discrep-

ancy between measure-

ments y and simulation

ŷ, where t = 0..N and N is

number of time-points in

D

19: Lt ← |yt − ŷt |2

maxDisc
� calculate square loss at each

time point t , where t = 0..N

20: L̄ ← ∑N
t=0 Lt ∗ ωt∑N

t=0 ωt

� calculate weighted average loss,

according to the weights
21:

22: ωt ← ωt ∗
[

L̄

1 − L̄

]1−Lt

, t = 0..N � update weights

23: ω ← normalize(ω, N) � normalize weights to N

24: end function
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validation data DV, an incomplete model incompleteModel, and an

integer k denoting how many base models are to be generated. The

output is a set of process-based models denoted with Ensemble.

Using probmot()(line 6), we learn a set candidate base models from

different random samples DS of the training data DT . The probmot()

procedure follows the algorithm design principles of the process-

based modeling paradigm, and resembles Algorithm 1 in terms of

inputs, outputs and flow.

The notable difference from bagging in the context of regression is

that in our case the data instances have a temporal ordering, that has

to be retained in each data sample. To achieve this, we implement

sampling by retaining the order of the instances and introducing a

weight for each instance (time-point), and provide it as part of the

data. The weight corresponds to the number of times the instance

has been selected in the process of sampling with replacement (sam-

ple() procedure). Instances that have not been selected (the ones with

weight 0) are simply omitted from the sample.

To take into account the weights when learning a model from the

sample, we employ the weighted root mean squared error (WRMSE)

implemented in ProBMoT:

WRMSE(m) =
√∑N

t=0 ωt ∗ (yt − ŷt)2∑n
t=0 ωt

, (1)

where yt and ŷt correspond to the measured and simulated values

(simulating the base model m) of the system variable y at time point t,

N denotes the number of instances in the data sample, and ωt denote

the weight of the data instance at time point t.

The output of a modeling task, when using ProBMoT, is a list of

process-based models, which is afterwards sorted according to their

performance (line 7 in Algorithm 3). Depending on the input in the

procedure, the ranking can be based on the performance on a sepa-

rate validation data set DV, or on the training sample (if DV == DT).

The highest ranked model from each modeling task i (out of k) de-

noted as bestModeli , becomes an ensemble constituent in the output

Ensemble.

Each ensemble constituent is paired with its own confidence β .

The condifence() function takes 2 inputs: the highest ranked model

returned by ProBMoT and a data set D. Fist the model is simulated

on the data set D resulting in a trajectory ŷ. Based on the error at

each time point in the trajectory an average loss L̄ is calculated for the

model (line 18 in Algorithm 3). From this loss, a confidence measure

β is calculated, where low values of β denote high confidence. The β
coefficient is an indicator of the performance of the base model and

is used in the process of simulating the ensemble, i.e., combining the

simulations of the constituents into an overall ensemble prediction.

4.2.2. Boosting of PBMs

The procedure for boosting of process-based models is presented

in Algorithm 4. In analogy with bagging, the Boosting() procedure,

takes the same four inputs: a library of domain knowledge lib, data

consisting of training data DT and validation data DV, incomplete

model incompleteModel, and an integer k denoting how many base

models are to be generated. In contrast to bagging, here we start with

the complete training data set (instead of a sample). In addition we

introduce the concept of weights for each data/time-point, which are

recalculated after every boosting iteration, (line 10 in Algorithm 4)

according to the error made by the model from the previous itera-

tion at the respective time point. In the learning phase, we use the

WRMSE objective function, presented in Eq. (1).

The reweight() function takes 3 inputs: the highest ranked model

(denoted with model) from the previous iteration, a data set D, and

the respective set of weights ω. While this function resembles the

confidence() function, there are important differences: here we con-

sider a set of time-point wise weights and loss (rather than a single

overall loss), and we calculate this on the training data (in contrast to
alidation data). First, the model is simulated on the data set D. Next,

ased on the error at each time point in the trajectory and the set

f weights ω, the weighted average loss L̄ is calculation. Finally, the

et of weights is updated: the smaller the loss the more the weight

s reduced – focusing on harder parts of the data set in the future

terations of the algorithm.

The output of the Boosting() procedure is a set of pairs (process-

ased models and their respective confidences) denoted with

nsemble. The highest ranked process-based model from each boost-

ng iteration is considered as an ensemble constituent, for which a

onfidence is calculated. As in bagging, the ranking can be based on

he performance of the process-based model on a separate validation

ata set DV, or on the training sample (if DV == DT ).

. Experimental setup

In this section, we present the setup of the experiments used to

valuate the predictive performance of the ensembles of process-

ased models. The aim of the evaluation presented is three-tiered.

irst, we want to identify the ensemble method that leads to best

ong-term predictions of process-based models. In particular, we

erform a comparative analysis of the predictive accuracies of the

odels obtained with bagging and boosting to the predictive accu-

acy of a single model. These experiments will confirm our hypothesis

hat ensembles of process-based models improve over the predictive

erformance of single models. Second, for each of the methods con-

idered, we identify the optimal design decisions in terms of choosing
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2 Predictions are obtained by simulating the model m on a test set.
he ensemble constituents, combining their predictions and choosing

he ensemble size. In the following sections, we first introduce the

ata sets to be used in the experiments, then briefly describe the two

ther ProBMoT inputs, i.e., the library of modeling knowledge and

ncomplete models, and finally define the performance metrics used

o asses the process-based models and ensembles thereof.

.1. Data sets

In the experiments, we use fifteen data sets from the domain of

quatic ecosystems, in particular, modeling food-web dynamics in

he three lakes of Bled in Slovenia, Kasumigaura in Japan, and Zurich

n Switzerland. The original data sets comprise monthly measure-

ents in the seven year periods from 1986 to 1992 for the Lake Ka-

umigaura (Atanasova et al., 2006a) and in the period from 1996 to

002 for Lake Bled (Atanasova et al., 2006c) and Lake Zurich (Dietzel,

ieleitner, Kardaetz, & Reichert, 2013). To obtain daily values, the

easurements were interpolated and daily samples were taken from

he interpolation.

For each aquatic ecosystem, we split the original multi-year data

ets into seven single-year data sets. Five of these were used (one at a

ime) for training the base-level models, one was used for validating

he models in the process of selecting the ensemble constituents, and

ne was used to measure the predictive performance of the learned

rocess-based models and ensembles thereof. Thus, we perform fif-

een learning experiments; in each, we take a single-year training

ata set, learn a model using the train and the validation data sets,

nd test its predictive performance on the test data set. In the tables

eporting the experimental results, we label the experiments with

he labels B1–B5, K1–K5 and Z1–Z5 corresponding to the training

ata set using in the experiment, where, e.g., K3 denotes the Lake

asumigaura data set for the third year (i.e., 1988).

.2. ProBMoT inputs and parameter settings

In our experiments, we use the library of domain-specific knowl-

dge for modeling population dynamics in aquatic ecosystems, based

n the previous work by Atanasova et al. (2006b). To reduce the com-

utational complexity of the experiments performed in this paper,

e used a simplified version of the library, where we omitted some

f the alternatives for modeling individual processes. The simplified

ersion of the library and the incomplete models, lead to 320 candi-

ate model structures (as opposed to 18144 with the whole library)

or Lake Kasumigarua and 128 candidates (as opposed to 27216 with

he whole library) for the other two lakes.

We use the same structure of the population dynamics model for

ll three aquatic ecosystems. It includes a single ordinary differen-

ial equation for a system variable representing the phytoplankton

iomass (measured as chlorophyll-a in Lake Kasumigaura). The ex-

genous variables include the concentration of zooplankton Daphnia

yalina (where available, i.e., for Bled and Zurich only), the dissolved

norganic nutrients of nitrogen, phosphorus, and silica (ammonia in

asumigaura), as well as two input variables representing the envi-

onmental influence of water temperature and global solar radiation

light).

ProBMoT uses the Differential Evolution (Storn & Price, 1997)

ethod for parameter estimation with population size 50, strategy

and/1/bin, differential weight (F) and crossover probability (Cr) of 0.6.

he limit on the number of evaluations of the objective function is

ne thousand per parameter. For simulating the ODEs, we used the

VODE simulator with absolute and relative tolerances set to 10−3.

.3. Evaluation metrics

To evaluate the predictive performance of a given model m, we

se the relative root mean squared error (ReRMSE) (Breiman, 1984),
efined as:

eRMSE(m) =
√∑N

t=0 (yt − ŷt)2∑N
t=0 (ȳ − ŷt)2

, (2)

here N denotes the number of measurements in the test data set, yt

nd ŷt correspond to the measured and predicted2 value of the system

ariable y at time point t, and ȳ denotes the mean value of y in the test

ata set. Note that the usual root mean squared error is considered

ere relative to the standard deviation of the system variable in the

est data, thus allowing us to compare the errors of models for system

ariables measured on different scales.

We observe and compare the predictive performance (ReRMSE) of

he models learned using different algorithms on the 15 data sets. To

ssess the statistical significance of the differences in performances

mong models obtained with different algorithms, we follow the rec-

mmendation by Demšar (2006) and use the corrected (Iman & Dav-

nport, 1980) Friedman test (Friedman, 1940), followed by the post-

oc Nemenyi test (Nemenyi, 1963). The Nemenyi test is used to ex-

lain where the significant differences come from (from which pairs

f algorithms) by computing the critical distance between the al-

orithm ranks at a given significance level; in our case, we set the

ignificance level threshold at 95% (i.e., p = 0.05). The results of the

riedman–Nemenyi tests are depicted in average rank diagrams, such

s the ones in Fig. 3.

Finally, to explore the correlation between ensemble performance

nd the diversity of the ensemble constituents, we measure the di-

ersity of the constituents of the ensemble e as the average pairwise

istance between the simulations of the constituents:

iversity(e) = 1

(|e|2 )

∑
{m1,m2}⊂e

√∑N
t=0 (y1,t − y2,t)2

N
, (3)

here |e| denotes the number of models in the ensemble, N the num-

er of measurements in the data set, m1 and m2 two models from

, and y1, t and y2, t the simulated states of these two models at time

oint t. To assess the performance improvement of the ensemble e

ver a single model m, we calculate:

mprovement(e, m) = −ReRMSE(e) − ReRMSE(m)

ReRMSE(m)
. (4)

e draw a scatter plot that depicts the correlation between ensemble

iversity and performance improvement and calculate the Pearson

orrelation coefficient between them.

. Results

In this section, we present and discuss the results of the empiri-

al evaluation. In particular, we first identify the most suitable design

ecisions for individual ensemble methods. Then, we test the valid-

ty of our central hypothesis that ensembles of process-based models

utperform the single process-based models. Finally, we investigate

hether the performance improvement is related to the diversity of

he predictions obtained with the ensemble constituents. Finally, we

iscuss the results in the context of the related machine learning re-

earch on ensembles.

.1. Learning ensembles of process-based models

The first design decision in an algorithm for learning ensembles of

BMs is related to the way of choosing the ensemble constituents. In

ach iteration of learning an ensemble, we select a single ensemble

onstituent, i.e., the highest ranked model from the ProBMoT output.

ote that the latter represents a list of models, ranked with respect



8492 N. Simidjievski et al. / Expert Systems With Applications 42 (2015) 8484–8496

Fig. 3. Comparison of the average ranks of different methods for selecting (and combining) ensemble constituents in terms of the predictive model performance averaged over the

fifteen data sets in the case of bagging (top) and boosting (bottom). The labels describe the methods and give their average ranks.
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to their performance on the training set. We refer to this base-line

method for choosing ensemble constituents as regular. Alternatively,

to avoid overfiting, we can re-rank the ProBMoT output, i.e., list of

models, according to their performance on a separate validation data

set. We refer to this selecting method as validation.

Fig. 3 summarizes the comparison between the performance of

the regular and the validation method for choosing the base models

to be included in the ensemble built in 50 iterations. The upper di-

agram depicts the results of the Friedman-Nemenyi test in the case

of bagging, while the lower diagram depicts the results for the case

of boosting. In both cases, choosing the base models based on their

ranking on a separate validation set leads to superior ensemble per-

formance. In the case of bagging, the superiority is statistically sig-

nificant (note that the critical distance is smaller than the difference

between the best validation rank and the best regular rank), while in

the case of boosting it is not statistically significant.

We conjectured earlier that choosing ensemble constituents

based on their performance on the training data set leads to ensem-

bles that overfit the training data. Fig. 4 confirms the validity of this

conjecture: in both cases (bagging and boosting), ensembles built us-

ing the regular selection method outperform the ones built with the

validation selection method. This demonstrates a clear case of overfit-

ting — while being superior on the training data, the regular selection

method leads to ensembles with poor predictive performance.

Next, we focus on the design decision concerning the most ap-

propriate method for combining the simulations of the base mod-

els in the ensemble. We compare the performance of three methods

commonly used in learning ensembles of regression models: average,

weighted average, and weighted median (Breiman, 1984; Drucker,

1997). Fig. 5 depicts the comparison of the average ranks of the three

methods for combining the base-model simulations in the case of

bagging and boosting with 50 iterations in each case. In both cases,

the simplest method, i.e. average, outperforms the other two. In the

case of bagging, the observed difference between the average and the
eighted average methods is statistically significant, while the other

ifferences are not significant. Given this, and following the parsi-

ony principle, we can conclude that the most appropriate method

or combining the simulations of the ensemble constituents is the

imple average.

For all experiments so far, we learned ensembles of fixed size,

lways consisting of 50 base models. In the last series of experiments,

e aim at making a decision on the optimal number of iterations

or learning ensembles of process-based models. To this end, we

ompare the predictive performance of ensembles consisting of 5,

0, 25 and 50 base models. Fig. 6 summarizes the results of the

omparison for both bagging and boosting. The Friedman-Nemenyi

iagram shows that the ensemble built in 25 iterations leads to the

est performance in both cases. Note however, that the observed

ifferences in performance are not statistically significant.

In summary, based on the presented results we make the follow-

ng design decisions related to learning ensembles of process-based

odels: We choose the ensemble constituents based on their perfor-

ance on a separate validation data set, we combine the base-model

redictions (simulations) using simple, unweighted, average and per-

orm 25 iterations of adding base-models to the ensemble. In all the

urther experiments, we used these algorithm settings for learning

nsembles.

.2. Ensemble performance and diversity

Having made the design decisions for learning ensembles of

rocess-based models, we necessary now focus on testing our cen-

ral hypothesis that ensembles improve the predictive performance

f process-based models. To this end, we compare the predictive per-

ormance of the ensembles with the one of a single process-based

odel learned on the whole training data set and chosen based on

ts performance on the separate validation data set. Fig. 7 depicts the
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Fig. 4. Comparison of the average ranks of different methods for selecting (and combining) ensemble constituents in terms of the descriptive model performance averaged over

the fifteen data sets in the case of bagging (top) and boosting (bottom). The labels describe the methods and give their average ranks.

Fig. 5. Comparison of the average ranks of the three methods for combining the simulations of base models (average, weighted average, and weighted median) in terms of

predictive performance averaged over the fifteen data sets in the case of bagging (left-hand side) and boosting (right-hand side).

Fig. 6. Comparison of the average ranks of ensembles that include 5, 10, 25, and 50 base models in terms of predictive performance averaged over the fifteen experimental data

sets.
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omparison of the average ranks of a single model as well as the bag-

ing and boosting ensembles, averaged over fifteen data sets.

The results of the Friedman-Nemenyi test show that both ensem-

le methods outperform the single process-based models. More im-

ortantly, the bagged ensembles significantly outperform the single

odels. These results support the central hypothesis of our paper
hat the ensembles improve the predictive performance of process-

ased models.

In our last set of experiments, we explore the relation of the ob-

erved significant improvement to the diversity of the simulations of

he ensemble constituents. We first measure the relative improve-

ent of the performance obtained by using an ensemble instead of a
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3 2 1

Critical Distance = 0.855543

Fig. 7. Comparison of the average ranks of the single model and the ensembles

(learned by using bagging and boosting) in terms of predictive performance averaged

over the fifteen data sets.

Table 4

Diversity of the base models and the percentage of the relative im-

provement of the ensemble error over the error of the single model

for the fifteen data sets. The Pearson correlation coefficient r between

the improvement and the diversity is also given.

Case Bagging Boosting

Diversity Improvement Diversity Improvement

B1 0.354 12.27% 0.342 12.97%

B2 0.561 4.48% 0.729 16.69%

B3 0.230 9.24% 0.477 11.77%

B4 0.617 17.45% 0.919 14.12%

B5 0.270 6.81% 0.408 24.29%

K1 1.010 1.04% 0.827 −24.32%

K2 1.030 35.06% 1.319 25.38%

K3 0.543 9.45% 0.656 3.59%

K4 0.598 1.02% 0.759 9.64%

K5 0.605 −1.53% 0.737 −7.97%

Z1 0.089 0.69% 0.411 −13.70%

Z2 0.234 7.23% 0.585 6.25%

Z3 0.223 5.72% 0.317 −1.01%

Z4 0.125 −2.33% 0.157 −4.21%

Z5 0.285 32.69% 0.702 15.16%

r 0.274 0.261
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single model. Then, we measure the diversity of base models in the

ensemble. Finally, we analyze the correlation between the two.

Table 4 and Fig. 8 summarize the results of these experiments. The

results presented in Table 4 confirm our previous finding: bagging

outperforms single models in all but two data sets, K5 and Z4. Note

that the loss of performance for these two data sets is minor (below

3%). On the other hand, the gain in performance can be substantial

and reach up to 17% for Lake Bled, 35% for Lake Kasumigaura and 33%
for Lake Zurich. o

Fig. 8. Scatter plots depicting the correlation between the diversity of the base-model pred

for fifteen data sets.
In the case of boosting, the improvement over the single model is

ess substantial, and more importantly, less consistent. The boosting

ethod outperforms the single model for the majority of the training

ata sets (up to 25% for the case of Lake Bled; up to 26% for Lake Ka-

umigaura; and 16% for Lake Zurich). However for the remaining five

ata sets (K1, K5, Z1, Z3 and Z4) it under-performs. Note that two of

hese (K5 and Z4) are the same as the ones where bagging under-

erforms. For the remaining three cases, bagging makes a modest

up to 6%) improvement over the single model. This confirms that

agging is a better method for learning ensembles of process-based

odels.

Finally, we observe a varying degree of diversity between ensem-

le constituents for different data sets—diversity varies from 0.125 to

.030. The scatter plots in Fig. 8 show weak positive correlation be-

ween ensemble diversity and relative improvement of performance.

hile measured Pearson correlation coefficient of 0.274 for bagging,

nd 0.261 for boosting, is neither high nor significant, the positive

orrelation is in line with the implicit assumption that ensembles

mprove predictive performance by exploiting the diversity of their

onstituents (Kuncheva & Whitaker, 2003).

.3. Discussion

The results presented in this paper confirm our main hypothesis

hat ensembles of process-based models yield a significant gain in

redictive performance when compared to a single model. Based on

he performed empirical evaluation, we identified the main design

ecisions that need to be made when learning such ensembles by us-

ng bagging and boosting as underlying methods. In this context, it is

ery important that one uses a separate validation data set in addition

o the training one when learning the base models included in the

nsemble. The optimal ensembles of PBMs consist of relatively low

umbers of constituent models, ranging between 10 and 25 for bag-

ing and 25–50 for boosting (for both methods, the best performing

nsembles comprised 25 constituents). For combining the simulation

f the constituent process-based models, the results showed that the

implest combining scheme, i.e averaging, provides the most satis-

ying results both in terms of predictive accuracy and computational

omplexity.

The process-based models, when simulated in a predictive set-

ing, can often produce divergent simulations, i.e., simulations where

he systems variables leave their plausible ranges. Therefore, when

imulating ensembles of PBMs, we explicitly handle this kind of be-

avior of the base models. We use the provided domain knowledge

n system variable ranges to discard the invalid behaviors from the
ictions and the relative error improvement between a single model and an ensemble
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esulting ensemble prediction. This can be viewed as a dynamic form

f ensemble pruning.

Finally, our major conclusion is that both methods for learn-

ng ensembles of process-based models, following the design out-

ined above, outperform single models. More importantly, bagged

rocess-based models provide a significant performance gain over

single model. Note that the improvement of performance over

he single model is positively related to the diversity of the en-

emble constituents — the higher the diversity, the greater the

mprovement.

However, in our case, the correlation between the diversity and

he performance gain is very weak. Breiman (1996a) states that bag-

ing can improve predictive performance when the ensemble is com-

osed of models whose predictions vary sufficiently. The base mod-

ls obtained in our approach have only modest diversity, which may

imit the full predictive potential of the ensembles. One reason for

his may be the lower number of model structures considered by

roBMoT, which used a simplified library of domain knowledge. This

an be overcome by using the original library, which leads to tens of

housands of model structures.

In addition, the study of Joshi, Agarwal, and Kumar (2002) points

ut that the performance of boosting is correlated with the perfor-

ance of the base learner, in our case, ProBMoT. This means that,

hen a single model obtained with ProBMoT, exhibits very good pre-

ictive performance, the ensembles exhibit similar or worse perfor-

ance. This may be one reason for the behavior seen in Table 4 for

he five highlighted experimental data sets (K1, K5, Z1, Z3 and Z4).

urther investigations are required to determine whether increased

iversity could lead to better performance.

. Conclusion

In this paper, we address the task of learning ensembles of

rocess-based models by designing, implementing and evaluating

ppropriate methodology. The developed methodology is general

nough to allow for adapting different ensemble methods to the par-

icular context of learning process-based models. This methodology

s the main contribution of our paper, since it extends the scope

f current process-based modeling approaches to the task of learn-

ng ensembles of process-based models. While the methodology has

een only used in the limited context of adapting bagging and boost-

ng, we can easily extend it towards other methods for learning ho-

ogeneous ensembles.

The second contribution of our paper is the extension of the

cope of ensemble methods to process-based modeling. While pre-

ious proof-of-concept experiments have been performed for spe-

ific types of ensembles (Simidjievski et al., 2015), this is the first

aper to provide a detailed layout of a methodology for building var-

ous types of ensembles of process-based models. This contribution

s also important in the wider context of ensembles for time-series

orecasting (Kourentzes et al., 2014; Ma et al., 2015; Tay et al., 2013).

hile forecasting ensembles have a narrow focus on short-term pre-

iction tasks, where the value of the time series at the next time

oint is predicted, ensembles of process-based models provide ac-

urate long-term predictions over many future time points. In con-

rast to Bridewell et al. (2005), who build ensembles that explain

bserved (albeit long-term) system behavior, the methods presented

ere provide accurate predictions of the unobserved future system

ehavior.

Note also that the results of the performed experimental evalu-

tion confirm our central conjecture that ensembles provide much

ore accurate predictions of future concentrations of species in an

quatic ecosystems than a single process-based model. While single

odels struggle with achieving the performance of the baseline pre-

ictor (that predicts constant species concentrations at the level of

heir average), the ensembles of process-based models lead to accu-
ate predictions of population dynamics over a long prediction peri-

ds, e.g., one season (year) in advance. When compared to previous

esults obtained in the domain of population dynamics (Atanasova

t al., 2006a, 2006c), this is also a non-trivial improvement of predic-

ive performance over the state-of-the-art models of population dy-

amics. These results are consistent over experiments with data from

hree real-world aquatic ecosystems: Lake Bled in Slovenia, Lake Ka-

umigaura in Japan, and Lake Zurich in Switzerland. This is the third

mportant contribution of our paper, which mainly contributes to the

omain of ecological modeling.

Several directions for further work can be followed. First, note

hat the validity of the results presented in this paper is limited to

he particular domain of modeling population dynamics in aquatic

cosystems. An immediate continuation of the work presented here

s to investigate the generality of the results across various domains

nd modeling tasks: both the superior performance of ensembles of

rocess-based models (as compared to individual models) and the

ptimal settings and design decisions for the algorithms for learning

hem need to be verified for other domains and datasets. Next, fol-

owing ideas from Bridewell et al. (2005), we intend to explore meth-

ds for incorporating the structure of the ensemble constituents into

single process-based model with good predictive performance.

Here we limit our attention to a single type of ensembles, where

he diversity in the ensemble is obtained by learning ensemble con-

tituents from different samples of the training data. In future, we can

xtend this narrow scope by considering other methods for generat-

ng ensemble constituents that rely on sampling the model variables

r sampling the model components/templates in the library of mod-

ling knowledge. The first method directly relates to the standard en-

emble method of random subspaces (Ho, 1998). The second method

ould take different samples of entity and process templates from

he library when learning individual models with the extra benefit

f reducing the computational complexity of the individual learning

asks due to the reduced complexity of the search space.

Finally, we intend to extend our methodology towards learning

nteractive ensembles of models of dynamic systems, referred to as

uper-models (Mirchev, Duane, Tang, & Kocarev, 2012; van den Berge,

elten, Wiegerinck, & Duane, 2011). In contrast to ensembles, where

he base models are learned and simulated independently and com-

ined afterwards, within super-models, the base models can share

nd interchange information both during the learning and the sim-

lation phase. In this context, one can learn the constituent models,

heir interconnections or both.
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