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A B S T R A C T   

Modelling tools are widely used to analyse the urban drainage systems and to simulate the effects of future urban 
development and stormwater control measures. Usually, these tools use only one mathematical model (pre-
determined by the modeller) at a time to describe a single hydrological process within the urban catchment. 
When there are alternative mathematical models for describing the same hydrological process, their suitability 
needs to be investigated separately, which makes the modelling task even more complex, time consuming and 
open for human errors. Furthermore, models have to be calibrated to achieve a better fit between measured and 
simulated runoff. Calibration can be performed either manually, by using a trial-and-error approach, or by 
employing search techniques and parameter optimization tools. To overcome the drawbacks associated with 
manual selection and calibration of models, automated modelling based on equation discovery was used in this 
study to a) find the most suitable mathematical model among multiple alternatives for describing every (envi-
ronmental) process modelled and b) to calibrate the model parameters against measured data. First, knowledge 
on urban runoff modelling was formalized into a new library of modelling components, compliant with the 
equation discovery tool ProBMoT (Process Based Modelling Tool). Next, a conceptual model of the experimental 
urban sub-catchment within the city of Ljubljana, Slovenia, was defined. ProBMoT was used to find the structure 
and parameters’ values of alternative rainfall-runoff models, according to the defined conceptual model that 
provide optimal fit against pipe flow measurements. Three alternative methods were used to describe infiltration: 
the SCS CN method, the Variable UK runoff equation, and the UK Water Industry Research equation. The pro-
posed automated model discovery approach for finding the optimal rainfall-runoff model proved to be very 
efficient. Nine rainfall-runoff models were created with very good performance. The best performance was 
achieved by the models that used a combination of two different infiltration methods, i.e. the SCS CN infiltration 
method for the pervious area and one of the other two infiltration methods for the impervious area.   

1. Introduction 

Growing urbanization, combined with climate change bringing more 
frequent and intensive rain events, is putting additional pressure on 
existing urban drainage (UD) systems (Zhou, 2014). Consequently, these 
systems frequently fail to effectively perform their function. Therefore, 
modelling and decision support tools can be of great assistance for 
analysing the current state of UD systems and for selecting the most 
suitable stormwater control measure(s) (SCMs) (e.g., Štajdohar et al., 
2016; Zhu et al., 2019; Li et al., 2020). In this context, one of the most 

widely used hydrological-hydraulic models of urban catchments is the 
open-source Stormwater Management Model (SWMM) (Rossman, 
2015), which supports a wide range of modelling functionalities, namely 
water quantity, water quality, sustainable drainage devices and spatial 
planning (Zoppou, 2001; Zhou, 2014). 

However, SWMM does not provide: a) geographic information sys-
tem (GIS) functionalities, such as catchment discretization, b) detailed 
overland routing simulations, and c) parameter calibration. Thus, in 
recent years, researchers have tried to overcome these limitations by 
proposing solutions that would to some extent automate or formalize the 

* Corresponding author. 
E-mail address: matej.radinja@fgg.uni-lj.si (M. Radinja).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2021.127077 
Received 22 February 2021; Received in revised form 30 August 2021; Accepted 11 October 2021   

mailto:matej.radinja@fgg.uni-lj.si
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2021.127077
https://doi.org/10.1016/j.jhydrol.2021.127077
https://doi.org/10.1016/j.jhydrol.2021.127077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2021.127077&domain=pdf


Journal of Hydrology 603 (2021) 127077

2

model development process within SWMM. Allende-Prieto et al. (2018) 
and Radinja et al. (2019) have developed urban hydrological-hydraulic 
models by using the open-source software Giswater (Giswater Associa-
tion, 2015), which enables integration of geospatial data (i.e., sewer 
system network, DEM, etc.) into the model development process. 
Furthermore, Dongquan et al. (2009) have successfully applied auto-
matic GIS-based catchment discretization on a Macau case study area of 
13.65 ha. Similarly, Warsta et al. (2017) have developed an automated 
subcatchment generator for SWMM using open data, which significantly 
accelerates project setup. The generator was applied to two subcatch-
ments in Helsinki, with an area of 13.9 ha and 33.5 ha respectively. 
Younis et al. (2017) have employed automated processing of satellite 
images for land use classification to improve the calibration of a 
wastewater network. 

To improve overland routing simulations, SWMM has been recently 
coupled with a two-dimensional overland flow model based on the 
cellular automata approach, for providing reliable urban nonpoint 
source pollution data (Dai et al., 2020). A similar approach has been 
used to simulate interactions between surface runoff and UD systems 
(Abbasizadeh et al., 2018). 

SWMM, like any other mechanistic model, uses one mathematical 
model (predetermined by the modeller) at a time to describe a single 
hydrological process within the urban catchment. After initial simula-
tion, models are calibrated to achieve a better fit between the measured 
and simulated runoff. Calibration can be performed either manually/ 
iteratively by using a trial-and-error approach or by employing search 
techniques (e.g., genetic algorithms, neural networks, regression trees 
etc.) (Niazi et al., 2017; Hu et al., 2018) and parameter optimization 
tools (e.g., PEST, OSTRICH) (Perin et al., 2020; Shahed Behrouz et al., 
2020). Optimization can be formulated either as a single-objective 
problem that minimizes the aggregate difference between measure-
ments and model simulations or a multi-objective problem that con-
siders multiple trade-offs (e.g., water quantity/quality, costs, and 
biodiversity) (di Pierro et al., 2006; Gamerith et al., 2011; Macro et al., 
2019). 

In case there are alternative mathematical models for describing the 
same (e.g., hydrological) process, their suitability needs to be investi-
gated separately, which makes the modelling task even more complex, 
time-consuming and open for human errors. To overcome the drawbacks 
associated with manual calibration and manual selection of models, 
automated modelling (AM) based on equation discovery can be used to 

a) find the most suitable mathematical model among multiple alterna-
tives for describing every (environmental) process modelled and b) to 
calibrate the model parameters against measured data. 

Equation discovery is an area of machine learning that develops 
methods for automated discovery of mathematical models, expressed in 
the form of equations, from collections of measured data (Džeroski and 
Todorovski, 2008). Automated modelling using knowledge libraries of 
model components has been already successfully applied for modelling 
aquatic ecosystems (Atanasova et al., 2006), watersheds (Škerjanec 
et al., 2014), dynamic biological systems (Tanevski et al., 2016), and 
water-tank dynamics (Simidjievski et al., 2020). To the best of our 
knowledge, no such attempts have yet been made in the field of urban 
surface runoff modelling. 

This paper provides integration of automated equation (model) dis-
covery and domain-specific knowledge in the field of surface runoff 
modelling. More specifically, the main aims of the paper are to: 

a) Develop a library of components formalizing the knowledge on 
urban runoff modelling, compliant with the equation discovery tool 
ProBMoT (Process-Based Modelling Tool) (Džeroski et al., 2020). 

b) Define a conceptual model of the experimental urban sub- 
catchment within the city of Ljubljana, Slovenia. 

c) Apply the proposed automated model discovery approach to find 
the optimal rainfall-runoff model for the above-mentioned case study 
area that best fits the available pipe flow measurements. 

2. Case study area 

The case study area is located in the western part of the city of 
Ljubljana, Slovenia, and covers about 30 ha. The predominant land use 
in this area is family houses with gardens (Fig. 1). The typical climate for 
the area is a temperate continental climate. The mean long-term (1986 – 
2016) annual rainfall is about 1380 mm and the average annual tem-
perature is 11 ◦C, ranging from –3 ◦C in winter to 24 ◦C in summer 
(Slovenian Environment Agency, 2018). The largest part of the area is 
serviced by a mixed sewer system with a length of approx. 5.4 km. 

3. Data and methods 

3.1. Data 

Precipitation data were provided by the Slovenian Forestry Institute, 

Fig. 1. Case study area.  
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for a rain gauge station located on the north side of the case study area 
(location: 46◦03′06.82′′ N, 14◦28′47.58′′ E, 306 m a.s.l.) (Slovenian 
Forestry Insitute, 2019). The measurements were performed with a 
Davis® (0.2 mm) Rain Gauge Smart Sensor (Onset Computer Corpora-
tion, 2016). The local public utility company (JP VODOVOD KANALI-
ZACIJA SNAGA d.o.o.) provided the information on the combined sewer 
network and the flow measurement data. The flow measurements were 
performed between 1 March 2019 and 30 September 2020 in a pipe (of 
the combined sewer system) collecting all contributing water from the 
case study area (location: 46◦02′44.56′′ N, 14◦29′01.82′′ E, 295 m a.s.l.) 
(Fig. 1). The flow rate was calculated based on the combination of non- 
contact radar velocity measurements and ultrasonic water level mea-
surements (Raven-eye, 2020). As the focus was only on surface runoff 
(stormwater) modelling and the measurements were conducted in a 
combined sewer system, the dry weather flow, which was measured 
before each rain event (8 – 20 L/s), was deducted from the total 
measured flow. For the preparation of precipitation and flow data, a 5- 
minute time step was used. 

Within the flow measurement period, four rainfall periods were 
selected for model calibration (C1 – C4) and four rainfall periods were 
selected for model validation (V1 – V4) (Table 1). Based on their dura-
tion, the rainfall periods can in general be divided into two groups: 
shorter (approx. 1 day) and longer (approx. 6 days). Hence, two short 
(C1 and C2) and two long (C3 and C4) rainfall periods were selected for 
model calibration. The longer calibration periods include multiple 
rainfall events of different intensities and durations, so that the ProB-
MoT tool could learn from different surface runoff responses of the 
catchment. The validation periods were selected based on the following 
criteria: a) duration, with shorter (V1 and V2) and longer (V3 and V4) 
periods; b) seasonal distribution; c) similarity in peak flows; d) stability 
of measured flows; and e) antecedent dry weather period. The rainfall 
periods are presented in consecutive order, based on the modelling 
phase (either calibration - C or validation - V) and duration of the 
modelled rainfall period (e.g. 1D – one day) (Table 1). 

3.2. Rainfall-runoff model 

Our rainfall-runoff model is based on the principles and equations 
used by the EPA Storm Water Management Model (SWMM)(Rossman, 
2015). The catchment is represented as a nonlinear reservoir, governed 
by surface storage mass balance, i.e. conservation of mass: 

∂d
∂t

= i − f − q (1)  

where d is the surface storage [m], i is the rate of rainfall [m/s], f is the 
infiltration rate [m/s], and q is the runoff rate [m/s]. Evaporation was 
not included in the model, due to its limited potential to significantly 
influence the water cycle within the modelled rainfall periods. The 
runoff flow rate per unit of the surface area is based on Manning’s 
equation (Rossman, 2015): 

q =
WS0.5

An
(d − ds)

5/3 (2)  

where q is the runoff flow rate per unit of the surface area [m/s], W is the 
sub-catchment width [m], S is the average slope of the sub-catchment 
[m/m], A is the surface area of the sub-catchment [m2], n is the sur-
face roughness coefficient [s/m1/3], d is the ponded water [m], and ds is 
the depression storage depth [m]. Afterwards, the total runoff flow from 
the catchment [L/s] is calculated by multiplying the catchment surface 
area [m2] and q [m/s]. 

There are several well-known alternative methods for modelling the 
infiltration process. Three alternatives were considered in this study: the 
SCS CN method, the Variable runoff equation, and the UK Water In-
dustry Research runoff equation. Thus, the complete rainfall-runoff 
model can have different structures based on which infiltration 
method is selected. In addition, different infiltration methods can be 
applied in different sub-catchments, resulting in many plausible model 
structures for a given catchment. 

3.2.1. SCS CN method 
This method assumes that the total infiltration capacity of a soil is 

related to the soil’s tabulated Curve Number (CN). The CN value is 
determined based on the hydrologic soil group, land use and hydrologic 
condition. CN values range from 30 to 98. The latter value is assigned to 
paved roadways, roofs and other impervious surfaces. At higher CN 
values, precipitation is mainly translated into a runoff. On the other 
hand, at lower CN values rainfall is mainly infiltrated and is thus not 
translated into runoff (NRCS, 1986). A modified version of the SCS CN 
equation was used, as described in the SWMM Reference Manual - Hy-
drology (Rossman, 2015). In the modified version, the initial abstraction 
(Ia) is not included, as it is already included in the depression storage (ds; 
see Eq. (2)). The following three equations (Eq. (3)–(5)) are used to 
calculate the infiltration rate: 

Table 1 
Characteristics of the selected rainfall periods used for calibration and validation.  

Period 
ID 

Rainfall 
period - 
start 

Rainfall 
period - 
end 

Durat- 
ion [h] 

Season Total 
precip. 
[mm] 

Total 
precip. 
time [h] 

Average precip. 
intensity [mm/ 
5min] 

Antecedent dry 
weather period 
[h] 

Total 
measured 
flow [m3] 

Measured 
peak flow [L/ 
s] 

C1_1D 1 Dec 2019 
(23:00) 

2 Dec 2019 
(19:00) 

20 Autumn 24.4  8.3  0.24 92 8,948 278 

C2_1D 15 May 
2020 
(05:00) 

16 May 
2020 
(03:00) 

22 Spring 29.6  7.3  0.34 51 7,409 442 

C3_6D 23 Apr 2019 
(04:30) 

29 Apr 2019 
(04:30) 

144 Spring 39.8  13.6  0.24 261 6,562 308 

C4_7D 11 Nov 
2019 
(12:30) 

18 Nov 
2019 
(11:30) 

167 Autumn 74.4  25.3  0.25 57 20,938 555 

V1_1D 31 Aug 
2020 
(12:00) 

1 Sept 2020 
(11:00) 

23 Summer 20.8  7.8  0.22 17 5,417 238 

V2_2D 21 Dec 2019 
(08:00) 

23 Dec 2019 
(02:00) 

42 Winter 56.4  14.3  0.33 115 17.045 429 

V3_5D 28 Sept 
2019 
(12:00) 

3 Oct 2019 
(01:00) 

109 Autumn 38.8  8.5  0.38 60 7.854 283 

V4_5D 1 Mar 2020 
(07:00) 

6 Mar 2020 
(15:00) 

128 Winter 81  26.1  0.26 55 19,578 301  

M. Radinja et al.                                                                                                                                                                                                                                



Journal of Hydrology 603 (2021) 127077

4

f =
(F2 − F1)

Δt
(3)  

where f is the infiltration rate [m/s], F2 is the cumulative infiltration at 
the end of a time step Δt [m], F1 is the cumulative infiltration at the 
beginning of a time step Δt [m], and Δt is the time step [s]; 

F = P −

(
P2

P + Smax

)

(4)  

where F is the cumulative infiltration [mm], P is the cumulative pre-
cipitation [mm], and Smax is the maximum storage capacity of a soil 
[mm]; 

Smax =

(
1000
CN

− 10
)

× 25.4 (5)  

where Smax is the maximum storage capacity of soil [mm] and CN is the 
tabulated coefficient that varies with the land use and soil type. 

3.2.2. Variable UK runoff equation 
The Variable UK runoff equation (VARUK) has three components: 

runoff from impervious areas, runoff from pervious areas and initial 
losses (Butler et al., 2018). It is based on data from 11 UK catchments 
and 112 rain events. The VARUK equation is as follows (Packman, 
1990): 

PR = IF × PIMP+(100 − IF × PIMP)
NAPI

PF
(6)  

where PR is the percentage runoff, IF is the effective impervious area 
factor, PIMP is the percentage of imperviousness, NAPI is the antecedent 
precipitation index [mm], and PF is the porosity factor [mm]. 

The rainfall can be converted into infiltration by using the following 
equation: 

f = i ×
(

1 −
PR
100

)

(7)  

3.2.3. UK water Industry Research runoff equation 
The UK Water Industry Research runoff equation (UKWIR; Kellagher, 

2014) was developed to overcome some of the limitations of VARUK 
(Woods Ballard et al., 2015), which are described in detail in the report 
Development of the UKWIR Runoff Model (2014). As VARUK, it has a 
fixed runoff component for paved surfaces (IFn × PIMPn). It was 
upgraded with a variable runoff component for paved surfaces(1 − IFn)×

PIMPn. Additionally, a component for pervious surfaces was 
added(1 − PIMPTOTAL), which enables differentiation between winter 
and summer runoff (i.e. negative NAPI). The UKWIR equation is then as 
follows: 

PR =
∑N

n=1
(IFn × PIMPn + (1 − IFn) × PIMPn ×

PIβ
pv

PFpv
)

+

(

(1 − PIMPTOTAL) ×
(NAPIs + PIs)

Cr
× SPR

PFs

)

(8)  

where PR is the percentage runoff for the model, IFn is the effective 
impermeability factor for a particular paved surface type, PIpv is the 
precipitation index for paved surfaces with a rapid decay coefficient, β is 
the power coefficient for paved surface, PFpv is the soil store depth for 
paved surface [mm], NAPIs is the antecedent precipitation index for a 
particular pervious surface type, PIs is the precipitation index for 
pervious surface with a decay coefficient, Cr is the power coefficient for 
pervious surface, SPR is the standard percentage runoff, and PFs is the 
soil storage depth for a particular pervious surface type [mm]. 

3.3. Equation discovery and process-based modelling 

The proposed automated modelling approach is based on the 
Process-Based Modelling Tool (ProBMoT), developed by Čerepnalkoski 
et al. (2012). ProBMoT allows for the integration of domain knowledge 
(e.g., urban hydrology), formalized as template components for the 
construction of the process-based models, into equation discovery from 
measured data. It automatically identifies both the structure and 
parameter values of an appropriate process-based model, given: a) a 
knowledge library (i.e., a mathematical formulation of the selected 
domain) in the form of model components, or, more specifically, tem-
plate entities and processes, b) a conceptual model of the observed 
system, and c) measurements (Fig. 2). 

Fig. 2. A schematic workflow for the automated modelling tool ProBMoT (Škerjanec et al., 2014).  

M. Radinja et al.                                                                                                                                                                                                                                



Journal of Hydrology 603 (2021) 127077

5

Candidate model structures are generated from the knowledge li-
brary and a user-specified conceptual model of an observed system. The 
candidate models are transformed into equations, calibrated against 
measurements and ranked according to their errors. The latter are 
calculated as the root-mean-squared-error (RMSE), i.e. discrepancy be-
tween the model simulation and measured data. 

To use ProBMoT for rainfall-runoff modelling in the presented case 
study, the following steps were taken: (1) the rainfall-runoff methods 
were encoded in a modelling library, (2) a conceptual model of the case 
study was elaborated, and (3) ProBMoT was set to discover the best 
model structure and parameters following the conceptual model of the 
case study (Radinja et al., 2021). 

3.3.1. Library of components for modelling rainfall-runoff 
The library consists of entity templates, process templates, and 

compartment templates. Each template captures general knowledge that 
applies to different cases and can be reused when dealing with a specific 
task. The dynamic system to be modelled, i.e., the catchment, can be 
structured by using compartments. Compartments are organized in a 
nested, tree-like structure. Each compartment contains entities and 
processes and can also contain other sub-compartments (e.g., sub- 
catchments or functional units) (Škerjanec et al., 2014). 

Moreover, entities represent the actors of the observed system. These 
actors are involved in processes that explain how entities interact, as 
well as what is the influence of the interactions on the involved entities 
themselves. In the urban runoff-modelling domain, entities correspond 
to different pools within the urban water cycle, climate variables and 
various types of constituents. 

Finally, processes provide quantitative descriptions of the relations 
among entities, in terms of one or more equations. In the urban runoff- 
modelling domain, examples of processes include water fluxes, i.e., 
transfer processes that are involved in the water cycle (e.g., surface 
runoff, infiltration) (Fig. 3). Thus, processes calculate the change of 
water fluxes (e.g., surface storage) within a time step and entities 
aggregate these changes over the simulated time. 

The equations presented in Section 3.2 were encoded in the knowl-
edge library as template processes named Hydrological processes. These 
include Outflow, SurfaceStorage, SurfaceRunoff, and Infiltration, with 
three alternative methods: InfiltrationSCS, InfiltrationUKWIR, and 
InfiltrationVARUK. Additionally, the Intercompartmental process 
TotalOutflow was introduced to sum the Outflow from both sub- 

compartments (i.e., sub1 and sub2; see Radinja et al., 2021). The time 
step in the presented equations is 1 s, thus ProBMoT is calculating the 
infiltration rate in m/s and flow in L/s. However, the actual time step of 
the input data (e.g., precipitation, measured flow) is 5 min, thus this is 
also the reporting time step. 

3.3.2. Conceptual model of the case study area 
The conceptual model of the case study area (Fig. 1) was structured 

as a single compartment (i.e., catchment), divided into two sub- 
compartments (i.e., sub1 and sub2). Sub1 represents the impervious 
part of the catchment and sub2 the pervious part of the catchment 
(Fig. 3). 

First, the parameters that appear in the equations presented in Sec-
tion 3.2 were listed as constants within the template entity Surface in the 
knowledge library, together with their expected ranges and units. Af-
terwards, this template was reused within the conceptual model (see 
Radinja et al., 2021), where the values and ranges of the constants were 
adjusted based on the (im)perviousness of the sub-catchment (Table 2), 
following the values proposed in the literature (NRCS, 1986; Kellagher, 
2014; Rossman, 2015). 

Fig. 3. Conceptual model of the structured urban catchment – compartments, entities and processes.  

Table 2 
Values/ranges assigned to each constant, for sub-catchments sub1 and sub2 
(conceptual model, entity Surface).  

Constants Unit sub1 - impervious sub2 - pervious 

area m2 150,000 150,000 
slope m/m 0.002 0.002 
width m range: 5000 – 10,000 range: 5000 – 7,500 
depstordepth m range: 0.00005–0.001 range: 0.0005–0.006 
n s/m1/3 range: 0.01–0.08 range: 0.15–0.80 
CN  range: 90–99 range: 30–75 
PIMPimp  100 0 
IF  range: 0.5–1 / 
B  range: 0.5–0.8 / 
PIimp  range: 0–1 / 
PFimp mm range: 10–15 / 
PIMPp  100 0 
NAPI mm / range: 0–40 
PIp  / range: 0.7–0.9 
Cr  / range: 0.8–1.0 
SPR  / range: 0.1–0.7 
PFp mm / range: 30–50  
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3.4. Assessment and comparison of model performance 

Once the potentially viable model structures are composed by the 
ProBMoT algorithm, their parameters are fitted to the provided mea-
surements and the resulting models are assessed according to their 
goodness of fit. Two measures are used to assess model performance: the 
Nash-Sutcliffe efficiency coefficient (NSE) (Nash and Sutcliffe, 1970) 
and RMSE-observations standard deviation ratio (RSR) (Moriasi et al., 
2007). NSE is commonly used to evaluate the goodness of fit of hydro-
logical models. It can range from minus infinity to one, where one 
represents a perfect match between the observed and the modelled 
discharge. A value of 0 indicates that the observed mean is as good 
predictor as the model, while the negative values indicate that the 
observed mean is a better predictor than the model (Wilcox et al., 1990; 
Legates and McCabe, 1999). RSR is standardizing the RMSE (root mean 
square error) by using the standard deviation of observations. It can 

range from the optimal value of 0, which indicates a perfect model, to a 
large positive value indicating a corresponding error. The lower the RSR, 
the better the model performance. To rate model performance based on 
NSE and RSR, the categorization proposed by Moriasi (2007) was used 
(Table 3). 

To find similarities/differences between the models based on their 
scored NSE and RSR values, the method of hierarchical clustering, as 
implemented by the Orange software (Demšar et al., 2013) was applied 
to the models. It forms a dendrogram for arbitrary types of objects (in 
this case models) based on a matrix of distances. Distances were calcu-
lated using the Euclidian metric, which is the “ordinary” straight-line 
distance between two points in Euclidean space. The points to cluster 
are the models, represented by their NSE and RSR values over all events 
(calibration and validation). For a better presentation of the hierarchical 
clustering, so-called heat maps were used to visualize the errors of the 
models with coloured spots. 

4. Results 

4.1. Calibration 

Given the conceptual model and the modelling library, ProBMoT 
explored 9 alternative structures (M1 – M9) (Table 5), each of which was 
calibrated and validated against the measured data. All models were 
calibrated by simultaneously using data from two short time periods of 

Table 3 
Performance rating for models based on their NSE and RSR values (adopted 
from Moriasi et al., 2007).  

Performance rating NSE RSR 

Very good 0.75 < NSE ≤ 1.00 0.00 < RSR ≤ 0.50 
Good 0.65 < NSE ≤ 0.75 0.50 < RSR ≤ 0.60 
Satisfactory 0.50 < NSE ≤ 0.65 0.60 < RSR ≤ 0.70 
Unsatisfactory NSE ≤ 0.50 RSR > 0.70  

Fig. 4. The measured flow and model predictions for the calibration periods C1 and C2.  
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measured flow, with a duration of approximately one day (C1 and C2) 
(Fig. 4), and two long time periods of measured flow, with a duration of 
approximately one week (C3 and C4) (Fig. 5). After calibration, all 
models generally had »very good« performance in terms of comparison 
between the simulated and measured flow (Table 4). For the first cali-
bration period (C1), the models scored the following average grades; 
average NSE value of 0.85, and average RSR value of 0.38. However, the 
models that use the SCS CN infiltration method for the pervious area (M1 
– M3) (average NSE value of 0.80) underpredicted the flow, when 
compared to the rest of the models (M4 – M9) (average NSE value of 
0.88). For the second calibration period (C2), the models scored an 

average NSE value of 0.76, and an average RSR value of 0.49. However, 
the models that use the SCS CN infiltration method for the impervious 
area (M1, M4, M7) (average NSE value of 0.72) underpredicted the flow, 
when compared to the rest of the models (average NSE value of 0.78). 

To improve the readability, only four models are presented on the 
hydrograph for longer calibration periods (C3 – C4) (Fig. 5). For the 
third calibration period (C3), the models scored an average NSE value of 
0.74, and an average RSR value of 0.51, almost fulfilling the criteria for 
»very good« model performance. In comparison to the first calibration 
period (C1), the models that use the SCS CN infiltration method for the 
pervious area (M1-M3) (average NSE value of 0.78) performed better 

Fig. 5. The measured flow and the predictions of four models for the calibration periods C3 and C4.  

Table 4 
NSE and RSR values for all models and modelled rainfall periods.  

Model Infil. Sub 1 Infil. Sub 2 C1_1D C2_1D C3_6D C4_7D V1_1D V2_2D V3_5D V4_5D    

NSE RSR NSE RSR NSE RSR NSE RSR NSE RSR NSE RSR NSE RSR NSE RSR 

M1 SCS SCS  0.79  0.46  0.72  0.55  0.78  0.47  0.77  0.48  0.83  0.41  0.91  0.31  0.86  0.37  0.75  0.50 
M2 UKWIR SCS  0.79  0.46  0.79  0.45  0.77  0.48  0.79  0.46  0.89  0.33  0.92  0.29  0.87  0.35  0.79  0.46 
M3 VARUK SCS  0.82  0.42  0.82  0.42  0.78  0.47  0.77  0.48  0.94  0.25  0.91  0.29  0.85  0.38  0.81  0.43 
M4 SCS UKWIR  0.89  0.34  0.72  0.55  0.73  0.52  0.79  0.46  0.88  0.34  0.89  0.34  0.77  0.48  0.80  0.44 
M5 UKWIR UKWIR  0.87  0.36  0.77  0.48  0.74  0.51  0.79  0.46  0.90  0.31  0.90  0.32  0.79  0.46  0.82  0.43 
M6 VARUK UKWIR  0.90  0.32  0.76  0.48  0.71  0.54  0.79  0.46  0.90  0.32  0.88  0.35  0.76  0.49  0.77  0.48 
M7 SCS VARUK  0.88  0.34  0.72  0.54  0.73  0.52  0.79  0.45  0.89  0.33  0.89  0.33  0.78  0.47  0.81  0.44 
M8 UKWIR VARUK  0.88  0.35  0.77  0.47  0.72  0.53  0.79  0.46  0.90  0.32  0.89  0.33  0.80  0.45  0.81  0.44 
M9 VARUK VARUK  0.87  0.36  0.78  0.47  0.73  0.52  0.79  0.46  0.91  0.30  0.90  0.32  0.81  0.44  0.82  0.42 
Average:  0.85  0.38  0.76  0.49  0.74  0.51  0.79  0.46  0.89  0.32  0.90  0.32  0.81  0.43  0.80  0.45  
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than the rest of the models (M4 – M9) (average NSE value of 0.73). For 
the fourth calibration period (C4), the models scored the average grades 
of 0.79 for NSE, and 0.46 for RSR. In comparison to the first three cal-
ibrations periods, no clear differences in model performance can be 
observed. 

4.2. Validation 

The calibrated models were validated on four different rainfall pe-
riods (Table 4) that vary in rainfall duration and intensity (Table 1). 
Fig. 6 presents the shorter two periods, namely V1, and V2. The vali-
dation period V1 lasted 23 h, i.e. 31 August 2020 (12:00) – 1 September 
2020 (11:00), with an average measured flow of 39 L/s. For this vali-
dation period, the models scored an average NSE value of 0.89 and an 
average RSR value of 0.32. However, the model that only includes the 
SCS CN infiltration method (M1) performed worse than the rest of the 
models (i.e., its NSE is 0.07 lower). It underestimated the flow values for 
the (beginning of the) first rain event for both short validation periods 
(V1 and V2). The validation period V2 lasted for 54 h (2 days), i.e. from 
21 December 2019 (08:00) – 23 December 2019 (14:00), with two 
rainfall events, causing the first and the second-highest peak flows 
among all validation events (Q1 = 429 L/s, and Q2 = 340 L/s). No clear 
differences in model performance can be observed across the different 
models for this validation period. 

To improve the readability, only four models are presented on the 
hydrograph for the longer validation periods (V3 and V4) (Fig. 7). 
Namely, the three models that use the same infiltration method for the 

pervious and impervious area (M1, M5, M9), and model M3, which had 
the best performance for these validation periods (Fig. 7). 

The validation period V3 lasted for 109 h (5 days), i.e. from 28 
September 2019 (12:00) – 3 October 2019 (01:00), with two individual 
rainfall events. In this case, the models that use the SCS CN infiltration 
method for the pervious area, performed better than the other models, 
with an average NSE value of 0.86. The models that use the VARUK or 
UKWIR infiltration method for the pervious area scored lower NSE 
values, ranging between 0.76 and 0.81. The first rainfall event is very 
dynamic and consists of three sub-peaks (Q1 = 185 L/s, Q2 = 227 L/s, 
Q3 = 260 L/s) within a period of 2 h, with clear breaks (low values) in- 
between (Q1 = 51 L/s, Q2 = 15 L/s). As for the previous validation 
periods, M1 underestimates flow at the beginning of the first event; 
however, it already fits the third sub-peak well. On the other hand, the 
models M3, M5, and M9 fit sub-peaks better; however, they do not fit the 
low values in-between as well. The second rainfall event also consists of 
three sub-peaks; here all models follow the shape of the measured 
hydrograph more consistently. 

The validation event V4 lasted for 128 h (5 days), i.e. from 1 March 
2020 (07:00) – 6 March 2020 (15:00), with three individual rainfall 
events (Fig. 7). For this validation period, the models scored an average 
NSE value of 0.80 and an average RSR value of 0.45. In general, all 
models overestimated the flow values. However, the model that only 
includes the SCS CN infiltration method (M1) performed worse than the 
rest of the models (i.e., its NSE is 0.05 lower). In comparison to the rest 
of the models, it least overestimated flow values for the (beginning of 
the) first rain event, yet for the next rain events, it overestimated flow 

Fig. 6. The measured flow and model predictions for the validation periods V1 and V2.  
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the most. 
Using hierarchical clustering, we clustered the models into groups 

according to their performance profiles (in terms of NSE and RSR co-
efficients) across all calibration and validation periods (Fig. 8). One can 
notice that for both coefficients, models are clustered similarly. Models 
M1, M2, and M3 form the first group (G1); They all use the SCS CN 
infiltration method for the sub2 (i.e., pervious area). The rest of the 
models (M4 – M9) form the second group (G2). Furthermore, one can 
notice that the models in the first group (G1) are generally more het-
erogeneous than models in the second group (G2). 

If we compare these groups based on the NSE and RSR values, one 
can notice, that for the shorter calibration periods (C1 and C2) models 
from the second group (G2) generally performed slightly better (i.e., 
average NSE 0.82, average RSR 0.42) than models from the first group 
(G1) (i.e., average NSE 0.79, average RSR 0.46). However, due to the 
very different model performance between M1 (i.e., NSE 0.83) and M3 
(i.e., NSE 0.94) for V1, this observation is not confirmed for the short 
validation periods. On the other hand, models from G1 performed better 
for longer calibration periods (C3 and C4) (i.e., average NSE 0.78, 
average RSR 0.47) and validation periods (V3 and V4) (i.e., average NSE 
0.82, average RSR 0.42), than models from G2 (i.e., for C3 and C4 
average NSE 0.76 and average RSR 0.49; for V3 and V4 average NSE 
0.79 and average RSR 0.45). 

5. Discussion 

5.1. Model analysis 

The derived rainfall-runoff models can be classified as lumped 
(regarding spatial resolution) and continuous (regarding temporal res-
olution) (Fletcher et al., 2013). The proposed tool enabled a systematic 
comparison of three alternative infiltration methods (i.e., SCS CN, 
VARUK, and UKWIR), allowing also combinations of these methods. 
This is a unique and novel approach, as normally only one infiltration 
method is used within one rainfall-runoff model. The developed 
knowledge library, compliant with the ProBMoT tool, enabled the 
automatic generation and calibration of these models. Based on the 
criteria for assessing models’ goodness of fit proposed by Moriasi et al. 
(2007) and presented in Table 3, the models on average had »very good« 
performance for the calibration periods C1, C2, and C4 and »good« 
performance for the calibration period C3. In the validation process, all 
models had »very good« performance for all validation periods, con-
firming the usefulness and efficiency of the proposed approach for 
calibration of model parameters. In general, the best performance was 
achieved by model M3, with an average NSE value of 0.80 for the 
calibration periods and an average NSE value of 0.88 for the validation 
periods. The second-best performance was achieved by model M2, with 
an average NSE value of 0.78 for the calibration periods and an average 

Fig. 7. The measured flow and the predictions of four models for the validation periods V3 and V4.  
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NSE value of 0.87 for the validation periods. However, some of the other 
models performed better for individual rainfall periods or achieved 
similar performance. This highlights the fact that no general conclusion 
can be made on which model is better, since model performance results 
are greatly influenced by the characteristics of calibration and valida-
tion periods (e.g., rainfall intensity, number of (sub) rainfall events …). 
Furthermore, this was also not the intention of this research. The true 
value and contribution of this research is the discovery of new knowl-
edge in the urban runoff-modelling domain by automated modelling. 
Namely, the best performance was achieved by models that used a 
combination of two different infiltration methods, in contrast to the 
usual approach of using a single infiltration method. 

5.2. Automated approach: advantages and limitations 

Urban runoff models can be either mechanistic, i.e. based on math-
ematical formulations of physical phenomena, or data-driven, also 
known as black-box models, learning from the relationship between the 
measured input and output data, with no description of the internal 
functioning of the system. Frequently, artificial neural networks are 
employed to develop data-driven rainfall-runoff models (Troutman 
et al., 2017). Compared to these types of automated modelling ap-
proaches, i.e. neural networks, our approach provides more trans-
parency, i.e. it is an automated way for constructing mechanistic model 
structures. The automation is used for composing viable model struc-
tures and calibration – the two most time consuming processes in the 
commonly followed modelling procedure. In addition, the search 
through the space of models is automated, i.e. systematic and avoids 
human errors. 

In order to build fully distributed models, hydraulic processes (i.e., 
pipe flow) should be included. Due to some limitations of the ProBMoT 
tool, only hydrological processes were included. Firstly, based on the 
required structure of the conceptual model, each pipe and manhole 
within the system would have to be presented as a separate compart-
ment, thus significantly increasing model complexity and prolonging 
computation. Secondly, ProBMoT does not support the encoding of 
difference equations and conditional statements (e.g., if-then rules). 
Additionally, all the equations included in the library must use the same 
time resolution. Hydraulic (pipe flow) modelling is crucial when 

modelling complex and large sewer systems. In our case, the case study 
area and the adjacent sewer system were relatively small, thus the hy-
draulic (pipe flow) modelling would not significantly affect the outflow 
dynamics. 

The three alternative infiltration methods (i.e., SCS CN, VARUK, and 
UKWIR) were selected and integrated into the knowledge library, as 
they were not affected by the above-mentioned limitations of the 
ProBMoT. On the other hand, some other frequently used infiltration 
methods (e.g., Horton, Green-Ampt) were not integrated due to the 
current ProBMoT limitations. In the future, we plan to overcome some of 
these ProBMoT limitations. This would allow us to upgrade the knowl-
edge library with hydraulic processes and to include additional infil-
tration methods. 

6. Conclusions 

In this study, an automated equation (model) discovery approach 
was applied to the field of urban runoff modelling. First, a new library of 
model components, compliant with the equation discovery tool ProB-
MoT was developed, formalizing the knowledge on urban runoff 
modelling. Next, a conceptual model of the experimental urban sub- 
catchment within the city of Ljubljana, Slovenia, was defined. The 
proposed methodology enabled the discovery of optimal structure and 
parameters’ values of the rainfall-runoff models based on the pipe flow 
measurements, including combination of infiltration methods within a 
single model structure, which represents a novelty in urban hydrological 
research. The main findings of the study are as follows: 

a) The proposed automated model discovery approach for finding 
the optimal rainfall-runoff models proved to be very efficient. Nine 
rainfall-runoff models were created that generally had »good« or »very 
good« performance. 

b) The models performed better for validation events with a more 
stable/constant flow, scoring higher NSE coefficient values and lower 
RSR coefficient values. 

c) Based on the model performance evaluation, two groups of models 
could be identified, based on whether the SCS CN infiltration method 
was assigned to the pervious area of the catchment. 

d) The best performance was achieved by models that used a com-
bination of two different infiltration methods, i.e. the SCS CN infiltration 
method for the pervious area in combination with one of the other two 
infiltration methods for the impervious area. 

e) Finally, this approach is transferable to any catchment and enables 
the discovery of viable rainfall-runoff models, best fitted to local specific 
conditions on one hand, and facilitates the validation and revision of 
established rainfall-runoff models on the other hand. 
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editing. Sašo Džeroski: Methodology, Software, Validation, Writing – 
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