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Abstract

Mathematical models are the principal tool for comprehending real-world systems. Mathe-
matical models, not unlike the systems they aim to represent, come in many different flavors.
Models provide an insight in the inner workings of the system, revealing the processes that
govern the behavior of the system. They can be used to recreate the system behavior or
simulate the behavior of the system under hypothetical conditions that have not yet been
observed. Models are also used to extrapolate the current behavior, thus making a prediction
of the future behavior of the system.

Process-based modeling is a modeling technique that uses two-level approach for model-
ing dynamical systems. It models systems on a purely qualitative level in terms of entities
and processes that involve those entities. On a quantitative level, all entities and processes
are given a quantitative formulation which is then translated into a set of ordinary differen-
tial equations.

Our aim is to develop a novel approach to inductive process modeling, including a novel
formalism for representing such models and a platform for learning such models from data
and domain knowledge. The approach should address current challenges to inductive process
modeling, grouped in two major categories. The first category addresses the representation
formalism and directly influences the amount of background knowledge that can be incor-
porated as well as the intelligibility and ease of use by domain experts. The second category
addresses the variety of modeling scenarios that can be tackled and includes the observabil-
ity scenarios and objective functions that can be used. It also addresses the efficiency of the
parameter estimation subsystem.

In this dissertation, we present ProBMoT, a tool for automated modeling of dynamical
systems that addresses both structure identification and parameter estimation. It takes into
account domain knowledge formalized as templates for the components of the process-based
models: entities and processes. Taking a conceptual model of the system, the library of
domain knowledge, and measurements of a particular dynamical system, it identifies both the
structure and numerical parameters of the appropriate process-based model. ProBMoT has
two main components corresponding to the two subtasks of modeling. The first component
is responsible for generating candidate model structures that adhere to the conceptual model
specified as input. The second subsystem uses the measured data to find suitable values for
the constant parameters of a given model by using parameter estimation methods. ProBMoT
uses model error to rank model structures and select the one that fits measured data best.

We investigate the influence of the selection of the parameter estimation methods on
the structure identification. We consider one local (derivative-based) and one global (meta-
heuristic) parameter estimation method. As opposed to other comparative studies of param-
eter estimation methods that focus on identifying parameters of a single model structure, we
compare the parameter estimation methods in the context of repetitive parameter estima-
tion for a number of candidate model structures. The results confirm the superiority of the
global optimization methods over the local ones in the context of structure identification.



Povzetek

Matemati¢ni modeli nam pomagajo pri razumevanju naravnih sistemov. Izbran sistem lahko
opiSemo z ve¢ razlicnimi modeli. Z njihovo pomocjo lahko opazujemo notranje delovanje
poljubnega sistema, pri ¢emer odkrivamo procese, ki vplivajo na njegovo obnasSanje. Z
omenjenimi modeli lahko posnemamo delovanje sistema ali pa simuliramo njegovo obnaSanje
pod razliénimi pogoji. Modele uporabljamo tudi za napovedovanje obnaSanja sistema v
prihodnosti.

Procesno modeliranje predstavlja poseben pristop k modeliranju, ki za opis poljubnega
dinamicnega sistema uporablja dve ravni. Na kvalitativni ravni se za opis sistema upo-
rabljajo entitete in procesi, ki te entitete povezujejo, na kvantitativni ravni pa so vsem
entitetam in procesom dodeljeni kvantitativni opisi, ki se v postopku modeliranja prevedejo
v sistem navadnih diferencialnih enacb.

Nas$ cilj je razviti nov pristop k induktivnemu procesnemu modeliranju, ki temelji na
novem formalizmu za opis modelov in racunalniSkem okolju, namenjenem ucenju modelov
na osnovi podatkov in domenskega znanja. Predlagan pristop se sooca s trenutnimi izzivi na
podroc¢ju induktivnega procesnega modeliranja, ki jih lahko razdelimo v dve veg¢ji skupini.
Prva obravnava formalizem za zapis domenskega znanja. Ta neposredno vpliva na koli¢ino
znanja, ki ga lahko vklju¢imo v postopek modeliranja, pri ¢emer sta pomembni predvsem
razumljivost formalizma in njegova uporabnost. Druga skupina obravnava vrsto razliénih
scenarijev in objektivnih funkcij, ki jih lahko uporabimo v postopku modeliranja. Hkrati
obravnava ucinkovitost podsistema za umerjanje parametrov.

V doktorski disertaciji predstavljamo ProBMoT, orodje za avtomatizirano modeliranje
dinamic¢nih sistemov, ki obravnava tako odkrivanje strukture kot tudi umerjanje parame-
trov modela. V ta namen uporablja domensko znanje, zapisano v obliki predlog komponent
procesnih modelov, natancéneje entitet in procesov. ProBMoT is¢e primerno strukturo in
ustrezne vrednosti parametrov procesnega modela na osnovi konceptualnega modela opazo-
vanega dinamic¢nega sistema, knjiznice domenskega znanja in meritev. Orodje sestavljata
dve osnovni komponenti, ki ustrezata dvema fazama modeliranja. Prva komponenta je od-
govorna za generiranje razlicnih kandidatnih struktur, ki sledijo opisu sistema, podanemu v
konceptualnem modelu. Druga komponenta uporablja merjene podatke za iskanje primernih
vrednosti parametrov modela, pri ¢emer se posluzuje posebnih metod umerjanja. Kot merilo
za razvrstitev generiranih struktur uporablja ProBMoT napako modela, na osnovi katere
izbere tudi strukturo, ki zagotavlja najboljSe ujemanje rezultatov modela z meritvami.

V disertaciji preiskujemo vpliv izbrane metode za umerjanje parametrov na proces od-
krivanja strukture modela. V ta namen obravnavamo dve metodi za umerjanje parametrov:
lokalno, ki temelji na odvodih funkcije, in globalno (metahevristi¢no). V primerjavi z pred-
hodnimi raziskavami, ki so preucevale metode za umerjanje parametrov z vidika iskanja
primernih vrednosti parametrov ene same strukture modela, v na$i disertaciji primerjamo
metode za umerjanje v kontekstu ponavljajotega se umerjanja ve¢ razliénih kandidatnih
struktur. Nasi rezultati potrjujejo, da je tudi z vidika umerjanja vec¢ razli¢cnih generiranih
struktur modela globalna optimizacijska metoda boljsa od lokalne.



1 Introduction

A scientific model is a description of a system using a formal language. Modeling is the
process in which such scientific models are created. By using models, we can conceptualize
systems from the real world so that we can analyze and better understand them (Box and
Draper, 1987).

Mathematical models are the principal tool for comprehending real-world systems. Math-
ematical models, not unlike the systems they aim to represent, come in many different flavors
(Gershenfeld, 1998). Models provide an insight in the inner workings of the system, reveal-
ing the processes that govern the behavior of the system. They can be used to recreate the
system behavior or simulate the behavior of the system under hypothetical conditions that
have not yet been observed. Models are also used to extrapolate the current behavior, thus
making a prediction of the future behavior of the system.

The main task of modeling is to establish a model for an observed system. This includes
identification of the structure of the model and estimation of its numerical parameters. Of
a particular interest to science and engineering is a class of systems referred to as dynamical
systems (Luenberger, 1979).

There are different definitions of dynamical systems in the literature. They all agree
that dynamical systems are systems that change their state over time. In the context of this
dissertation, we present the following definition by Aoki and Hiraide (1994).

Dynamical systems are characterized by three main components:

e time T, which is an ordered set.

e state space S, which is the set of all possible states that the system can assume. Any
given state provides a complete description of the system.

e cvolution rule R, that describes the transition from one state to another at a given
point in time. We can represent it in the form of a function R: T x§ — S

Dynamical systems can be categorized into several types, depending on the type of their
components. The time of a dynamical system can be either discrete or continuous. The
state space can also be discrete or continuous, whereas the evolution rule can have either
a deterministic or a stochastic form. This results in eight different types of dynamical
systems, some more common than the others. We concentrate our attention on one type of
dynamical systems—those characterized by continuous time, a continuous state space and
a deterministic evolution rule.

This class of dynamical systems is especially common in natural sciences and engineering
and describes most of the tangible dynamical systems that appear in practice. A common
choice for modeling such systems are Ordinary Differential Equations (ODEs). Differential
equations (Braun, 1993) are a natural choice because they deal with continuous time and
space and provide explanations that are time invariant. ODEs can be used to simulate the
system’s behavior and compare the simulation to empirically obtained data. In addition,
ODEs can be used to make numerical predictions about the future states that the system
will assume.

One drawback of using ODEs, however, is that the more complex the system gets, the
longer the equations tend to grow, which makes them extremely difficult to comprehend. It
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gets increasingly difficult to relate parts of an equation to phenomena of the system and to
track the genealogy of the terms of the equation with respect to the processes that occur
in the system. A much more desirable representation would encapsulate the specific terms
from the equations into meaningful concepts that the domain expert can relate to and grasp
with relative ease.

When exploring a system, scientists also ponder the qualitative aspects of the system,
trying to decompose it into simpler, more manageable concepts and analyze the relationships
between those concepts. A formalism for modeling dynamical systems should thus include
facilities that would enable constructing the system from smaller, more manageable pieces
and describing the system in terms of the relationships of its components. A key property
of such a formalism would be the ability to translate a model to a set of ODEs, so that it
can be worked with quantitatively and be brought to the level of detail and precision which
is common for dynamical systems.

1.1 Modeling Dynamical Systems and Artificial Intelligence

The modeling of dynamical systems involves several stages (Luenberger, 1979). When devis-
ing a model of a dynamical system, the first task is to decide on the structure of the model.
Starting with a conceptual model of the system of interest and using knowledge about mod-
eling the specific domain, the modeling expert selects the most suitable model structure for
the observed ecosystem. This is the structure identification phase of the modeling process.

Once the model structure has been specified, the modeler has to determine suitable values
for the numerical parameters of the model. To this end, he can use different techniques for
estimating the values of the parameters from measured data about the behavior of the
system. The data include measurements of the factors that drive the changes of the system,
as well as the quantities that determine the state of the system. This is the parameter
estimation phase of the modeling process.

The task of modeling dynamical systems has been addressed extensively within several
research areas. In electrical engineering, the area of system identification is concerned with
finding models using measured data. In artificial intelligence, the area of qualitative rea-
soning is concerned with formulating understandable models of dynamic systems, while the
area of equation discovery (a topic in machine learning) tries to learn both model structure
and parameters from data.

The work in this thesis is situated at the intersection of the above areas. In the following
subsections, we briefly discuss approaches from each area. System identification is discussed
first, followed by evolutionary computing, equation discovery and qualitative reasoning. In
addition, the topics of numerical simulation of ODEs and nonlinear optimization are also
introduced, since the work presented in the thesis employs existing methods developed within
the corresponding areas.

1.1.1 System Identification

System identification (Ljung, 1999) focuses on identifying a suitable model for a given sys-
tems based on observed and measured data of the system behavior. Identifying the model
involves two tasks: structure identification and parameter estimation. The most widely used
system identification approaches focus on the parameter estimation task. The structure of
the model is typically assumed to be known or given by the domain expert. When the struc-
ture of the model is not known, it is chosen form some well-defined class of model structures
such as linear equations, polynomials, neural networks, or regression trees.

Classical techniques used in system identification like linear regression, finite impulse
response, or autoregressive integrated moving average are very suitable for modeling linear
dynamical systems. When the system is known to be nonlinear, it is common to resort
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to linearizing the system before using the aforementioned techniques. Nonlinear system
identification (Nelles, 2001) fares much better at this challenging task. Nonlinear modeling
techniques, including neural networks, fuzzy, and neuro-fuzzy models, have been used used
with great success to model various industrial systems.

Classical, as well as nonlinear, system identification techniques suffer from the same
shortcomings. They do not necessarily reveal the processes that govern the behavior of the
observed system. The models are primarily black-box models, which can be very successful
in predicting future behavior, but dot not disclose the internal structure of the systems and
do not provide the domain expert with an insight into why the systems behaves in a certain
manner.

1.1.2 Evolutionary Computing

Evolutionary computing (Eiben and Smith, 2003) is the collective name for a vast range of
computational methods based on principles of biological evolution, such as natural selection
and genetic inheritance. These methods can be applied to problems that involve both
continuous and combinatorial optimization.

Genetic programming (Koza, 1992, 1994) is a evolutionary technique for the automatic
generation of computer programs residing on concepts from the theory of evolution. Genetic
programming can be used to evolve an algebraic expression as part of an equation repre-
senting measured input-output response data. The technique has been applied successfully
for the identification of nonlinear structures of dynamical models from experimental data
(Gray et al., 1998). More recently, Schmidt and Lipson (2009) have demonstrated the dis-
covery of physical laws directly from experimentally captured data with the use of genetic
programming.

The crucial drawback of genetic programming in the context of modeling dynamical
systems is the limited amount of background knowledge that can be used in the generation of
candidate model structures. Genetic programming typically relies on a pool of mathematical
functions and operators that are combined to obtain the resulting model structure. The best-
fitting model may often contain implausible combinations of otherwise allowed mathematical
functions. This limits the applicability of genetic programming in domains where theoretical
modeling knowledge is abundant and constrains the space of plausible models.

1.1.3 Equation Discovery

Machine learning (Mitchell, 1997) is largely concerned with the extraction of new knowledge
from accumulated experience presented in the form of training examples. Equation discovery
(Langley et al., 1987) is a subfield of machine learning focusing on developing methods for
discovery of quantitative laws, expressed as equations, from measured data.

Equation discovery methods can be used to learn an equation based model of a system
from measurements and observations. Thus, they are closely related to system identifi-
cation. Unlike system identification, however, equation discovery methods simultaneously
tackle both structure identification and parameter estimation. Moreover, equation discovery
methods very commonly rely on system identification techniques for solving the parameter
estimation task.

A number of methods have been developed within equation discovery, including BA-
CON (Langley et al., 1987), ABACUS (Falkenhainer and Michalski, 1986), COPER (Kokar,
1986), EF (Zembowicz and Zytkow, 1992), E* (Schaffer, 1993), LAGRANGE (Dzeroski and
Todorovski, 1995), and SDS (Washio and Motoda, 1997). They use a predefined, reasonably
small class of possible equations structures, such as polynomials or trigonometric functions.
They allow some degree of user influence in the form of parameters of the algorithm like the
degree of the induced polynomial or the number of terms in the equation. The background
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knowledge used by these early algorithms is very limited, and usually comes in the form of
information about the measurement units of the state variables.

These early equation discovery methods mostly focus on discovering algebraic equations,
and are not suitable for modeling dynamical systems. LAGRANGE, however, can discover
a set of differential equations by computing beforehand the numerical derivatives of the
observed state variables. Unfortunately, numerical differentiation introduces large numerical
errors and is very sensitive to noisy data. GOLDHORN (Krizman et al., 1995) uses numerical
integration instead of differentiation, thus improving the numerical stability of the algorithm.

The equation discovery method LAGRAMGE (Todorovski and Dzeroski, 1997) is capable
of discovering ordinary differential equations whose right-hand side can be derived using a
user provided context-free grammar. Each equation structure considered during the search
contains one or more generic constant parameters. The parameters are estimated using the
parameter estimation technique ALG-717 by Bunch et al. (1993).

1.1.4 Qualitative Reasoning

Within artificial intelligence (Russell and Norvig, 1995), the filed of qualitative reasoning
(Kuipers, 1994) deals with qualitative representations of physical systems and reasoning
about them. The most commonly used formalism for specifying qualitative models are
qualitative differential equations (QDEs), simulated with the QSIM algorithm (Kuipers,
1994).

Qualitative process theory (Forbus, 1984) provides a framework for building qualitative
models. The framework relies on the notion of a physical process, which can apply to
some components of the system and influence their parameters. The model building tool
QPC (Crawford et al., 1990) takes the approach of qualitative process theory and organizes
domain-specific background knowledge in libraries of model fragments that specify models
of processes or components of the observed system.

The PRET reasoning system (Bradley et al., 2001) aims to automate modeling by build-
ing a layer of artificial intelligence techniques around a set of traditional formal engineering
methods. PRET takes a generate-and-test approach, using a meta-domain theory that tai-
lors the space of candidate models. It then tests these models against the behavior of the
observed system using more-general mathematical rules.

Garp3 (Bredeweg et al., 2009) is a user-oriented workbench for building, simulating, and
inspecting qualitative models. It uses a graphical user interface, where models are presented
as graphs and each node is a system quantity or a process. It is suitable for creating
conceptual models in situations where numerical information is sparse or unavailable.

1.1.5 Numerical Simulation of ODEs

The methodology presented in this dissertation relies on well-established methods for numer-
ical simulation of ODEs. In this section we briefly introduce the most influential methods
to solving ODEs and their most widely spread software implementations.

The simplest method for numerical simulation of ODEs is the Euler’s method (Press
et al., 2007) which is based on the geometric interpretation of the derivative as the slope of
the tangent line touching the curve that represents the true value of the state variable. The
Euler’s method is numerically unstable and suffers from and introduces a global simulation
error proportional to the step size which makes it unusable on anything except the simplest
differential equations.

An important family of methods for solving ODEs are Runge-Kutta methods (Verner,
1978, 1979). Runge-Kutta (RK) methods are linear one-step methods that use a series of
internal approximations (stages) to reduce the local, and hence the global simulation error.
They are not very efficient because they require multiple functional evaluations per step in
order to produce a simulation.
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The most widely spread class of methods for solving ODEs are linear multistep methods
(Butcher, 2003). Linear multistep (LM) methods improve efficiency over RK methods by
reusing the computation from previous steps rather than discarding it. A k-step linear
multistep method uses a linear combination of the k previous points and derivative values to
compute the current value. Although there are many sets of LM methods derived, there are
two families which are most commonly used: Adams-Moulton methods and the backward
differentiation formulas.

Adams-Moulton formulas (Sampine and Gordon, 1975; Gear, 1971) are implicit, and
hence a set of nonlinear equations must be solved in each step. Typically, simple functional
iterations are used to solve the nonlinear equations. Adams-Moulton methods are very
efficient and well suited to applications that require the values at a large number of points,
but are limited to nonstiff differential equations.

The most commonly used multistep methods for solving sets of stiff equations are the
backward differentiation formulas (BDFs) (Ascher and Petzold, 1998; Iserles, 1996). Sim-
ilarly to Adams-Moulton methods, BDFs are also implicit formulas and require solving
nonlinear equations at each step, but in contrast to them, BDF's require some form of New-
ton iterations. The Newton iterations nonlinear solver require the solution of linear systems
involving the Jacobian of the system.

There is a wide array of FORTRAN solvers, among which LSODE (Livermore Solver for
Ordinary Differential Equations) and VODE (Variable-coefficient ODE solver) have been
heavily utilized.

The package LSODE (Hindmarsh, 1980, 1983) has been designed for the numerical so-
lution of a system of first-order ordinary differential equations given the initial values. It
includes a variable-step, variable-order Adams-Moulton method (suitable for nonstiff prob-
lems) of orders 1 to 12 and a variable-step, variable- order backward differentiation formula
method (suitable for stiff problems) of orders 1 to 5. LSODE allows for a manual selection
of method order in addition to the default automatic selection.

VODE (Brown et al., 1989) is a general purpose ODES solver very similar to LSODE.
The main difference between VODE and LSODE is that VODE uses variable-coefficient
methods (fixed-leading coefficient form) instead of the fixed-step-interpolate methods in
LSODE. Brown et al. (1989) have shown that VODE is often more efficient than LSODE.

The library CVODE (Cohen and Hindmarsh, 1996; Hindmarsh et al., 2005) is a reim-
plementation of the VODE package in the C programming language. It contains all of the
methods present in VODE, with some considerable improvements in the organization of the
package. CVODE implements a variable-order, variable-step multistep methods including
both Adams-Moulton and BDF's.

1.1.6 Parameter Estimation Through Nonlinear Continuous Optimization

Classical approaches to nonlinear continuous optimization are mainly local optimization
methods (such as direct-search and derivative-based methods) that rapidly converge to the
optimum, provided that the search is started from an initial point that is in close proximity
of the optimum. As these methods do not have mechanism to escape from the local optima,
they only guarantee local convergence. Derivative-based methods are an adequate choice for
smooth and unimodal objective functions, but they can fail if the landscape is discontinuous,
non-smooth, multi-modal or ill-conditioned. The disadvantage of the direct-search method is
that they become less efficient for high-dimensional problems. Therefore, it is recommended
to use global optimization approaches that are more robust regarding the dimensionality
and the landscape characteristic of the search space.

Global optimization approaches can be divided into deterministic (exact) and stochastic
(probabilistic). The deterministic methods (e.g., branch and bound, interior-point, cutting
planes etc.) can locate the global optima and assure their optimality, but do not guarantee
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that they can solve any type of global optimization problems in finite time. Stochastic
methods, on the other hand, rely on probabilistic search rules to find good solutions (Térn
et al., 1999). They can locate the neighborhood of the global optima relatively quickly,
but their efficiency comes at the cost of not being able to guarantee global optimality.
In the last two decades, special attention has been given to meta-heuristics: These are
general-purpose algorithms that can find acceptable solutions in a reasonable time-frame in
complex and large search domain. Most meta-heuristics are inspired by natural processes
such as evolution (evolutionary algorithms) or social behavior of biological organisms, e.g.,
ant colony optimization (Dorigo and Stiitzle, 2004).

Another notable approach is Covariance Matrix Adaptation - Evolution Strategy (CMA-
ES) developed by Hansen and Ostermeier (1996). This method uses evolutionary strategy
to update the covariance matrix of this distribution, hence learning a second order model of
the underlying objective function.

The methodology developed in the dissertation utilizes three optimization methods. One
of them is a local method, Alogorithm 717—an efficient and state-of-the-art implementation
of the classical derivative-based approach to local optimization.The other two are global
optimization methods. Recently, many methods for nonlinear optimization have been in-
troduced and compared in the context of standardized black-box optimization benchmarks
(Hansen et al., 2010). In the thesis, we selected two of them. One is Differential Evolu-
tion, a classical evolutionary method for nonlinear optimization. The other global method is
Differential Ant-Stigmergy Algorithm, a contemporary meta-heuristic optimization method.

Algorithm 717 (ALG-717)

Algorithm 717 (ALG-717) is a set of modules for solving the parameter estimation problem
in nonlinear regression models, including the nonlinear least-squares, maximum likelihood,
and some robust fitting problems (Bunch et al., 1993). The basic method is a generalization
of NL2SOL - an adaptive nonlinear least-squares algorithm, which uses a model/trust-region
technique for computing trial steps along with an adaptive choice for the Hessian model.
Since ALG-717 is not a global search algorithm, we wrapped the original procedure in a
loop of restarts with randomly chosen initial points, providing in some way a simple global
search. The number of restarts was set to use a number of function evaluations comparable
to that of the other method (DASA). We used the module for constraint (on parameter
bounds) optimization with user-supplied routines for the first and second-order derivatives
of the objective function.

The Differential Ant-Stigmergy Algorithm (DASA)

The DASA algorithm was proposed by (Korosec et al., 2012). It is a version of an Ant Colony
Optimization (ACO) meta-heuristic, designed to successfully cope with high-dimensional
continuous optimization problems. The rationale behind the algorithm is in memorizing the
move in the search space that improves the current best solution, and using it in further
searches. The algorithm uses pheromones as a means of communication between ants (a
phenomenon called stigmergy), combined with graph representation of the search space.
The most important property of DASA is that it transforms the problem into a graph-
search problem by fine-grained discretization of the continuous domain of the parameters’
differences, unlike the common way of discretizing parameters values. The parameters’
differences assigned to the graph vertices are used to navigate through the search space.

Differential Evolution

Differential evolution (DE) is a simple and efficient population-based heuristic for optimizing
real-valued multi-modal functions, introduced by Storn and Price (1997, 1995). It belongs to
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the class of evolutionary algorithms based on the idea of simulating the natural evolution of
a population P of individuals (candidate solutions) via the processes of selection, mutation
and crossover.

The main difference between traditional evolutionary algorithms and DE is in the re-
production step, where for every candidate solution an offspring is created using a simple
arithmetic (differential) mutation operation over three (or more) parents. Moreover, uni-
form crossover is introduced, in order to increase the diversity of the mutated solution.
Finally, the offspring is evaluated and if its fitness (objective function) is better, it replaces
the corresponding candidate solution in the population.

1.2 Inductive Process Modeling

Inductive process modeling (IPM) lies at the intersection of system identification, equation
discovery and qualitative reasoning. It involves constructing a process-based model of a
dynamical system from observed data about the system (capturing the behavior of the
system over time). Process-based domain knowledge is also used in IPM, in addition to
the observed data. The proponents of inductive process modeling claim that casting the
domain and learned knowledge in terms of processes with associated equations is desirable
for scientific and engineering domains, where such notations are commonly used.

In the following subsections be briefly summarize the existing approaches to inductive
process modeling and their and reveal their limitations. They are addressed in much greater
detail in Chapter 2.

1.2.1 State of the Art in IPM

LAGRAMGE 2.0 (Todorovski, 2003; Todorovski and Dzeroski, 2006) is a modeling frame-
work that integrates the knowledge-based (theoretical) approach to modeling with data-
driven (empirical) modeling. The framework allows for integration of modeling knowledge
specific to the domain of interest in the process of model induction from measured data.
The knowledge is organized around the central notion of basic process in the domain and
it includes models thereof as well as guidelines for combining models of individual processes
into a model of the entire observed system. This framework uses the equation discovery tool
LAGRAMGE (Todorovski and Dzeroski, 1997) to heuristically search through the space of
candidate models, match them against data, and find the one that fits the data best.

The background knowledge in IPM (Bridewell et al., 2008) is specified in terms of generic
processes. They do not commit to particular variables or parameter values, but they indicate
constraints on them, like the type of the variables and the range of the parameters. The
background knowledge also contains a hierarchy of variables that descend from the same
base type number.

HIPM (Todorovski et al., 2005) extends IPM’s formalism and organizes process knowl-
edge in a hierarchical manner. Hierarchical processes characterize an observed system’s
behavior at distinct levels. The hierarchical structure lets the induction method carry out
search through an AND/OR space rather than an OR space, thus reducing the number of
candidate models considered and ensuring that these models will make sense to domain sci-
entists. This approach requires greater effort to encode background knowledge, but offsets
this with a more efficient search over a space of more plausible models.

1.2.2 Limitations of Existing IPM Approaches

Our aim is to develop a novel approach to inductive process modeling, including a novel
formalism for representing such models and a platform for learning such models from data
and domain knowledge. The approach should address current challenges to IPM, grouped
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in two major categories. The first category addresses the representation formalism and
directly influences the amount of background knowledge that can be incorporated as well
as the intelligibility and ease of use by domain experts. The second category addresses the
variety of modeling scenarios that can be tackled and includes the observability scenarios
and objective functions that can be used. It also addresses the efficiency of the parameter
estimation subsystem.

Representation

LAGRAMGE 2.0 uses a declarative language for textually representing the background
knowledge and models. The background knowledge for a domain of interest is specified in a
domain-specific library. This library defines the components for building the models, as well
as, the search space of possible model structures. If the domain expert has some beforehand
knowledge of the specific system, he has to tailor the library to his specific scenario. This,
in essence, means that each IPM task requires its own custom-build library.

IPM is unable to exclude combinations of processes when considering candidate model
structures. Because the background knowledge typically contains many alternatives of the
same conceptual process, IPM takes into consideration models which contain duplicate con-
ceptual processes. IPM is also unable to imply that certain processes may only appear in
conjunction with some other particular process or not appear at all. This issue arises in
IPM’s treatment of nested processes.

HIPM does not introduce a modeling language for the representation of models and
background knowledge. Instead, the models and background knowledge are expressed in
its internal representation, directly in Python. While Python is a language with very little
syntactic overhead and manages to capture the semantic relations of process-based modeling
in a fairly clean manner, it is nevertheless a programming language. Having in mind that
IPM tools are intended to be used not only by computer scientists, but even more so by
domain experts from diverse fields including environmental sciences, computational biology,
and earth sciences among others, a conventional programming language is not the optimal
solution.

As the system complexity increases, so does the complexity of the model of the system.
Large and complex systems are commonly represented through multi-compartment models.
Disciplines like integrated environmental modeling (Laniak et al., 2013) or systems biology
(Kitano, 2001), which focus on large-scale models employ compartments to structure and
organize the models. Each compartment acts like a small-scale model focused on one segment
of the system. Compartments can communicate and exchange information through well
defined inter-compartmental processes. None of LAGRAMGE 2.0, IPM, and HIPM includes
facilities to support multi-compartmental modeling.

The power of a formalism for representing models and background knowledge comes
from its flexibility. A flexible formalism can support domain expert in formulating complex
modeling scenarios. Advanced modeling facilities like compartments, hierarchies of modeling
components, and incomplete models increase the flexibility a formalism and enable the mod-
eling expert to perform sophisticated, well-targeted experiments. These facilities, however,
also increase the complexity of the formalism. Defining the capabilities of the formalism,
the relations and properties that hold between its object requires a rigorous mathematical
specification. The existing methodologies LAGRAMGE 2.0, IPM, and HIPM do not contain
mathematical specifications of their components.

Modeling Scenarios

Identifying the system structure and parameters becomes even more challenging when the
system cannot be fully observed. The full description of the system in any point in time is
contained in its state variables. When the number of state variables and the measurement
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technology permit, we can directly observe all state variables. Such a system is a fully
observed system. In many real-world scenarios, however, we can only observe some of the
state variables, whereas the rest of them are unobservable (or hidden). Such a system is a
partially observed system. LAGRAMGE 2.0, IPM, and HIPM support the specification of
partially observed systems. However, the modeling scenario may require that the quantities
that are observed can even be a function of several state variables. Handling such versatile
observational scenarios requires explicitly modeling the output of the system. None of the
existing approaches supports explicit specification of output functions.

The variety of modeling tasks that can be tackled to a large extend depends on the
parameter estimation technique that is used. LAGRAMGE 2.0, IPM, and HIPM use the
local optimization method ALG-717 (Bunch et al., 1993) to solve the parameter estimation
task for each candidate model structure. Local optimization algorithms are unsuitable for
estimating the parameters of nonlinear models with many parameters. The parameter space
of such a model forms a large and multimodal landscape and finding the global optimum
presents too hard of a problem for a local algorithm. Global optimization methods (Horst
et al., 2000) and in particular metaheuristic methods are more robust in finding solutions
in large and complex parameter spaces.

1.3 Contributions

The main contributions of the dissertation are summarized as follows:

1. Development of a formalism for representing process-based models and
background knowledge. The process-based formalism is designed to alleviate the
shortcomings of previous approaches. The main improvements integrated into the
formalism are the following:

(a) A mathematical notation for all concepts and relations in the formal-
ism. Each concept for which there is a textual representation in the process-
based formalism, including the constructs both in the models and the background
knowledge, has its mathematical counterpart. The information contained in the
models and the background knowledge is represented as a set of mathematical
functions and relations. This notation is the means for formally expressing the
properties of process-based models and background knowledge, as well as the
algorithms that operate on them.

(b) Support for compartmental modeling. The process-based formalism in-
cludes compartments as first-class citizens enabling the construction of hierarchi-
cal multi-compartment models.

(c) Incompletely specified process-based models. Incompletely specified proc-
ess-based models are process-based models which are incomplete in the structural
specification or in the numerical parameters. Incomplete models serve as a means
to specify the partial knowledge about the system being modeled, thus defining
the task and space of feasible model candidates for the IPM methodology.

2. Development of the IPM platform ProBMoT. ProBMoT implements the pro-
posed process-based formalism as the language for representing models, incomplete
models, and libraries of background knowledge. Furthermore, ProBMoT implements
the complete pipeline of inductive process modeling including the enumeration of all
candidate model structures and parameter estimation. The main improvements im-
plemented in ProBMoT are the following:

(a) Support for arbitrary observational scenarios. ProBMoT includes an ex-
plicit output specification which includes not only observable and hidden vari-
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ables, but arbitrary algebraic equations (including parameters) that can involve
model variables and constants.

(b) Improved performance of the parameter estimation stage. In addition to
local optimization methods, ProBMoT integrates global optimization methods,
based on metaheuristic algorithms, for the parameter estimation stage. These
global optimization methods outperform local optimization methods in finding
parameter values.

(c) Selection of different quality criteria. ProBMoT integrates different quality
criteria in the form of various error function. These error functions can serve as
objective functions for the optimization algorithms for parameter estimation.

3. Practical evaluation of the ProBMoT platform. ProBMoT was experimentally
evaluated on a case study of modeling phytoplankton growth in four different aquatic
ecosystems. The case study aims to :

(a) Show the suitability of ProBMoT platform for automated modeling of
dynamical systems. Mathematical modeling of aquatic ecosystems comprises
a considerable amount of knowledge reflected through a vast variety of different
models that can be found in literature.

(b) Introduce criteria for comparing parameter estimation methods in the
context of structure identification. The criteria try to answer the following
three questions. What is the difference between the errors of the best mod-
els obtained with different parameter estimation methods? What is the overall
difference between the errors of the models obtained with different parameter
estimation methods? What is the difference between the errors of each candidate
model structure obtained with different parameter estimation methods?

(¢) Demonstrate the superiority of global optimization methods over local
optimization methods. Numerous studies have confirmed the advantages of
metaheuristics for parameter estimation when calibrating a single model. We ex-
tend those claims to the task of automated modeling and demonstrate that meta-
heuristics outperform local search when dealing with multiple candidate model
structures.

1.4 Organization

This chapter provides a broader context for the thesis. It gives an overview of related areas
and the research performed therein. It identifies the shortcomings of existing approaches
and presents the motivation of the performed research. It concludes with a summary of the
main contributions of the dissertation.

Chapter 2 briefly introduces inductive process modeling as an approach to automated
modeling of dynamical systems. It discusses the most closely related approaches to the one
proposed in the thesis. The discussion is structured along several design issues concerning
representation and induction of process-based models.

Chapter 3 introduces and describes in detail the representational aspects of our ap-
proach to process-based modeling. It demonstrates the qualitative and quantitative aspects
of process-based models. It describes the main components of process-based models: en-
tities, processes, and compartments. Process-based models and background knowledge are
introduced through a series of examples, each one building upon the previous ones.

Chapter 4 formalizes the process-based modeling constructs introduced in Chapter 3.
Process-based models and libraries of background knowledge must satisfy a number of rules
and constraints in order to form valid representations. This chapter introduces a formal
notation suitable for precise, mathematically sound, definitions of the key concepts of the
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process-based formalism. The use of this formal notation and the provision of formal defi-
nitions simplify the task of expressing the properties of process-based models and libraries.

Chapter 5 starts with a discussion of how the qualitative aspects detailed in the previous
chapter are translated into quantitative characteristics of process-based models. It then
focuses on structural and parameter incompleteness of process-based models and how these
are represented in the formalism. Next, it presents in detail incompletely specified models
and discusses their use as constraints on the resulting model candidates.

Chapter 6 presents ProBMoT (Process-Based Modeling Tool). ProBMoT uses the
process-based formalism presented in Chapters 3 and 4 for describing the domain knowledge
organized in libraries. The chapter starts with a definition of the inductive process modeling
task. It then outlines the ProBMoT pipeline consisting of two main phases: model structure
enumeration and parameter estimation. It then discusses each of these phases in detail and
presents the implemented algorithms.

Chapter 7 presents the empirical evaluation of ProBMoT on the case study of modeling
phytoplankton dynamics in four aquatic ecosystems. The aim of this study is to compare
the influence of two established methods for parameter estimation, a local (ALG-717) and a
global (DASA), on the overall process of automated modeling of aquatic ecosystems. First,
the developed library for modeling aquatic ecosystems, which is used as domain knowledge,
is presented. Next, the data from four ecosystems, relevant for modeling phytoplankton
dynamics, and the conceptual models for each ecosystem are discussed. The results of the
study are then presented and analyzed according to three evaluation criteria.

Finally, Chapter 8 concludes the dissertation. It summarizes the presented work, focusing
on its contributions to science. It also outlines several directions for further work.
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2 Inductive Process Modeling

Inductive process modeling (IPM) involves constructing a process-based model of a dynam-
ical system from observed data about the system (capturing the behavior of the system over
time). Process-based domain knowledge is also used in IPM, in addition to the observed
data. The proponents of inductive process modeling claim that casting the domain and
learned knowledge in terms of processes with associated equations is desirable for scientific
and engineering domains, where such notations are commonly used.

Models in science and engineering often provide explanations which include variables,
objects, or mechanisms that are unobserved, but help predict the behavior of the observed
variables. Moreover, explanations posit causal structures that link these elements to ob-
served variables. They often use general concepts or relations that occur in different models.

The term inductive process modeling was coined by Langley et al. (2002), who formally
stated IPM as a challenging research problem for machine learning. The origins of the
IPM idea, however, come from Dzeroski and Todorovski (2001, 2002), who considered the
use of the paradigm (without naming it IPM) for modeling population dynamics processes
(Dzeroski and Todorovski, 2003). The first working machine learning system for IPM was
thus LAGRAMGE 2.0 (Todorovski, 2003; Todorovski and Dzeroski, 2006).

Bridewell et al. (2008) give a more detailed account of the paradigm of inductive process
modeling. They describe a process-based formalism for representing models and domain
knowledge. They also describe a system for learning process-based models and its experi-
mental evaluation. An extension of IPM, called HIPM, was introduced by Todorovski et al.
(2005), which organizes the process-based models and domain knowledge in a hierarchical
manner.

In the remainder of this chapter, we first briefly introduce inductive process modeling,
following Bridewell et al. (2008). We then give a brief overview of the systems LAGRAMGE
2.0, IPM and HIPM, discussing the design decisions taken in each of them concerning the
representation and induction of process-based models. We identify their limitations and
shortcomings that have motivated the work presented in this dissertation.

2.1 Process-Models and the IPM Task

Bridewell et al. (2008) define a process model as a set of processes that link observable
variables with each other causally, possibly through unobserved theoretical terms. The
processes are represented in terms of differential equations (for modeling change over time)
and algebraic equations (for modeling instantaneous effects). The specific processes in such
a model are assumed to be instances of some set of generic processes that, taken together,
constitute the background knowledge about the domain in question. Generic processes
can be viewed as general laws and the model, which incorporates some of the situational
conditions, can be viewed as the formal explanation of the observed behaviors (trajectories)
of the system.

Process models put an emphasis on comprehensibility and plausibility by using a model-
ing notation familiar to scientists. They do introduce some (minimal) syntactic overhead, as
one could build a more concise model by putting all equations into a single process. Having,
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however, the equation fragments assigned to specific processes, clarifies the mechanisms of
the modeled system.

Bridewell et al. (2008) identify that the direct mapping between the model’s equations
and the background knowledge provides two benefits. First, the explicit relationship between
the two levels of knowledge removes the need to infer such a mapping, which can be difficult
even for domain scientists. Second, the knowledge encoded in the generic processes provides
an important source of constraints on the specific models one might consider as explanations
for a data set.

Inductive process modeling involves constructing a process-based model of a dynamical
system from observed behavior(s) of the system. Process-based domain knowledge is also
used, in addition to the observed data. The task of inductive process modeling is thus
defined as:

Given:

e Observations for a set of continuous variables as they change over time,

e A set of observed, unobserved, and exogenous (forcing) variables that the model in-
cludes,

e Generic processes that specify causal relations among variables using generalized func-
tional forms,

e Constrains, such as variable type information, that determine which processes may
relate particular variables.

Find:

e A specific process model that, when given initial values for the modeled variables and
values for any exogenous variables, explains the observed data and predicts unseen
data accurately.

2.2 Design Decisions in Inductive Process Modeling

A platform for solving the inductive process modeling task must make several design de-
cisions. The first major aspect that any platform has to address is the representation of
the models and background knowledge, as well as the representation of the specification of
the modeling task. The second major aspect is the methodology for induction of models,
in which the two main components are the searching over the space of candidate model
structures and the estimation of model parameters.

2.2.1 Representation

The representation of models and background knowledge can be implemented in a number
of ways. The simplest way is to implement the components of the model as objects in an
object-oriented language. This would relieve the developer of such a platform from devising
an interface for communicating models and knowledge into and out of the platform. It
would, however, put the burden on the user of the platform, who would have to be familiar
with the programming language of choice.

Another option is to represent the models and background knowledge in a machine
readable textual format, such as XML. XML representations can be easily read by humans,
but are still cuambersome for use by domain experts.

The most acceptable and intuitive representation for domain experts would be a textual
representation with simple syntactic rules and minimal artificial constructs. Such a represen-
tation would require the development of a domain specific language (DSL) for representing
models and background knowledge and an accompanying parsing infrastructure.
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Models

The representation revolves around the notion of a process as an abstraction for the phe-
nomena that occur in the system. A process carries a quantitative description in the form of
a set of equations that are associated with it. In addition to processes, the model contains
variables and constant parameters. The variables can be considered as first-class citizens of
the model, or can be grouped to form larger constructs, such as entities, which would relate
to actors of the system. Some processes may be viewed as compound processes, which can
be decomposed into simpler nested processes, thus forming a containment hierarchy of pro-
cesses. A representation format may also allow for decomposition of models into sub-models,
to provide means for managing complex models.

Background Knowledge

Domain-specific knowledge is of different types, including background knowledge and con-
straints (Muggleton, 1991, 1999; Dzeroski et al., 2010). The background knowledge for
inductive process modeling is structured into a domain-specific library, that contains def-
initions of entity and process templates. The library contains alternative mathematical
formulations for the conceptual processes. The more background knowledge (more alterna-
tive formulations), the larger the potential space of models to consider.

The representation choices for the library should allow the domain experts to express
as much of their knowledge as possible. Expressing knowledge about individual processes
is crucial, but it is important to be able to express relations between variables/entities and
processes, as well as between processes.

Task Specifications

Along with the background knowledge, the user of an inductive process modeling platform
must provide a task specification. The task specification places constraints on the search
space of models: The more constraints, the smaller the actual search space.

The task specification is formulated as a configuration of the particular system of interest.
The minimal information present in the task specification concerns the variables/entities that
are present in the system. If no other information is passed to the platform, then all viable
alternatives encoded by the library can be considered as plausible models. Oftentimes, the
domain expert has additional knowledge about the system at hand, in the form of processes
that previous research has shown to occur, or previous analysis of the numerical parameters,
and is not interested in looking for alternatives for them.

2.2.2 Induction

The induction algorithm is at the core of inductive process modeling. The background
knowledge and task specification define the space of candidate model structures. The induc-
tion algorithm searches this space and estimates the constant parameters of each candidate
model structure.

Search Over the Space of Model Structures

The space of model structures is determined by the library of background knowledge and the
task specification. The domain-specific library acts as a data base of alternative modeling
components. The more components it contains, the larger the search space is. It is impor-
tant, however, that this space restricts implausible model structures as much as possible,
thus focusing the search resources on the important candidate models.

The task specification restricts the space of candidate model structures by providing
constraints about the modeled system. The more detailed the task specification, the more
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constraints on the candidate models are provided. This implies a smaller space of candidate
models.

The search space can be explored exhaustively or non-exhaustively. Exhaustive enumer-
ation is feasible when the size of the search space is small, and allows us to make stronger
statements about the results (given that we have not missed any candidate model). Non-
exhaustive search is usually heuristically driven, and allows us to explore larger search spaces,
but may miss some good candidate models.

Parameter Estimation

Each candidate model that is considered during induction is fitted against measured data.
The parameter estimation stage determines how well each candidate model will fit the data,
and in the end, how well the best model will fit the data. Inductive process modeling
platforms evaluate a large number of candidate models during the search, which in turn
implies the need for a general-purpose, robust parameter estimation technique that can
cope with many different error landscapes that may be encountered during the search.

2.3 LAGRAMGE 2.0

LAGRAMGE 2.0 (Todorovski, 2003; Todorovski and Dzeroski, 2006) is a modeling frame-
work that integrates the knowledge-based (theoretical) approach to modeling with data-
driven (empirical) modeling. The framework allows for integration of modeling knowledge
specific to the domain of interest in the process of model induction from measured data.
The knowledge is organized around the central notion of basic process in the domain and
it includes models thereof as well as guidelines for combining models of individual processes
into a model of the entire observed system. This framework uses the equation discovery tool
LAGRAMGE (Todorovski and Dzeroski, 1997) to heuristically search through the space of
candidate models, match them against data, and find the one that fits the data best.

LAGRAMGE 2.0 uses a special-purpose textual representation for models and back-
ground knowledge with minimal syntactic overhead. The background knowledge consists of
a taxonomy of variable types, taxonomy of process classes and a set of combining schemes.
The taxonomy of variable types includes a declaration of all valid variable types and their
super-types. The taxonomy of process classes is defined in such a way that it specifies that
the process model can be used for modeling processes in the current class as well as processes
from the more general (ancestor) classes in the taxonomy.

Each definition of a process class consists of: the type of variables involved, conditions
on the variables involved, and a declaration of the process model. The first part of the
definition specifies the types of variables that can influence and be influenced by processes
in the class. The second part of the process class definition specifies constraints on the
variables involved in the process, usually denoting that the different arguments of a process
cannot contain the same variable. The final part of the process class definition specifies the
equation template that is used by domain experts to model processes in the class.

The library also includes one combining scheme for each type of variables which is being
modeled with LAGRAMGE 2.0. The combining scheme specifies how to build the equation
that models the time change of a system variable from individual process models. The
combining scheme usually uses aggregation functions, such as sum or product, to combine
the models of all processes that influence that variable.

In order to use the knowledge for modeling of a particular system, a specification of the
system is provided. The specification includes a list of system variables and their associated
types. It also includes a list of processes, and their classes, that govern the dynamics of the
observed system.
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The domain-specific knowledge is transformed into a context-dependent grammar based
on the declarations of the system variables and processes. The starting symbol for the
grammar corresponds to the combining schemes. The other nonterminal symbols in the
grammar correspond to the processes classes. Alternative productions for each nonterminal
symbol specify alternative models of the corresponding process class.

The resulting grammar specifies the space of candidate models for the observed system.
The equation discovery method LAGRAMGE is then used to search through the space of
candidate models. LAGRAMGE can use either an exhaustive search, limited by the depth
of the parse trees, or a beam search with adjustable beam width.

LAGRAMGE 2.0 substitutes the downhill simplex and Levenberq-Marquart algorithms
that LAGRAMGE uses with ALG-717, a non-linear optimization algorithm, proposed by
Bunch et al. (1993). ALG-717 can take into account lower and upper bounds on parame-
ter values. In addition, LAGRAMGE 2.0 restarts the parameter estimation method with
different randomly chosen combinations of initial values, thus decreasing the likelihood of
getting stuck in a local optimum.

LAGRAMGE 2.0, however, suffers from a number of shortcomings. It does not allow
the user to fix the values of constant parameters in modeling scenarios where their value
is known. The only workaround is to fix the values of the constant parameters in the
library, thus defeating the purpose of the library as a repository of domain-wide knowledge.
Moreover, a constant is not defined at any single place, but its definition is taken to be at
the place where it is used. That makes fixing the value of a constant even more tedious,
since one constant can have multiple occurrences in the library, and they all have to be
updated. Difficulties in understanding and interpretation of libraries and models can arise
from unnamed constants which are used in the combining schemes. These are all given
a generic name, which makes it hard to track their meaning in large models, where they
appear at multiple locations.

The background knowledge about processes and their influence on variables is divided
across the taxonomy of process classes and the combining scheme. The need for using a
combining scheme arises primarily because each process can return only a single equation
fragment. The combining scheme is then used to attribute this equation fragment to multiple
variables that might be targeted by the process. Allowing processes to influence multiple
variables will overcome the need for using a cumbersome combining scheme.

Finally, even though LAGRAMGE 2.0 improves upon LAGRAMGE’s parameter estima-
tion, it still relies on a local search method. The parameter space is often highly non-linear
with multiple local optima. While the multiple restarts technique alleviates this problem as
compared to a single run of a local optimization method, it still does not address it properly.

24 IPM

The background knowledge in IPM (Bridewell et al., 2008) is specified in terms of generic
processes. They do not commit to particular variables or parameter values, but they indicate
constraints on them, like the type of the variables and the range of the parameters. The
background knowledge also contains a hierarchy of variables that descend from the same
base type number.

In addition to the generic processes, IPM needs a set of typed variables and training
data for the exogenous and observable system variables. Combined with the set of generic
processes, this information defines the space of model structures that the IPM will search.

To produce a simulation of a process model, IPM carries out two phases. The first phase
combines the component from each of the processes into a system of differential and algebraic
equations. During this conversion, the system ensures that the algebraic equations will be
solved according to their causal ordering. The module’s second phase evaluates the ODE
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model using CVODE (Hindmarsh et al., 2005), a solver for first-order differential equations,
coupled with basic arithmetics for handling the algebraic equations.

IPM operates in three stages. In the first stage, it finds all permissible instantiations
of the generic processes with the specified variables. A permissible instantiation takes into
account only the variables whose types are compatible with the generic process. In the
second stage, subsets of this collection of partially instantiated processes are used to form
generic models, each of which specifies an explanatory structure. The space of generic
models is a power set of the set of partially instantiated processes. The system carries
out an exhaustive search of model structures by enumerating this power set, retaining as
candidate models only those members that satisfy user-provided constraints, including the
maximum number of processes in the model and the list of generic processes that must be
instantiated. The third stage infers the parameter values for each generic model using ALG-
717 (Bunch et al., 1993) which carries out a second-order gradient descent search through
the parameter space.

A major limitation of the knowledge representation in IPM is the inability to exclude
combinations of processes when considering candidate model structures. Because the space
of candidate models is generated as a power set, any combination of generic processes is
considered plausible. However, the library typically contains many alternatives of the same
conceptual process and IPM, therefore, takes into consideration models which contain dupli-
cate conceptual processes. This does not correspond to the expectations of domain experts,
who would consider as plausible only models that contain one instance of each conceptual
process.

Another limitation is the inability to imply that certain processes may only appear in
conjunction with some other particular process or not appear at all. This issue arises in
IPM’s treatment of nested processes. IPM allows the modeler to decompose a complex
process into several simpler and more manageable processes that communicate information
through some variables. These component processes, however, make sense only when they
appear in the model together with the other nested processes that make up the complex
interaction. The model that results when some of the nested processes are missing is not
considered as plausible by the domain expert.

In a similar fashion to LAGRAMGE 2.0, IPM also relies on ALG-717 for parameter
estimation, which gives rise to the same concerns over the ability of the method to find
globally acceptable parameter values.

2.5 HIPM

HIPM (Todorovski et al., 2005) extends IPM’s formalism and organizes process knowledge
in a hierarchical manner. Hierarchical processes characterize an observed system’s behavior
at distinct levels. The hierarchical structure lets the induction method carry out search
through an AND/OR space rather than an OR space, thus reducing the number of candidate
models considered and ensuring that these models will make sense to domain scientists.
This approach requires greater effort to encode background knowledge, but offsets this with
a more efficient search over a space of more plausible models.

In HIPM’s formalism, variables are replaced with entities that group properties of the
observed actors of the system. Entities can have two kinds of properties—variables and
constants. The value of variables can change over time, while constant parameters describe
aspects of an entity that do not change over time for a given system.

HIPM identifies and addresses two limitations of IPM, regarding the assumptions how
to combine processes into a model. The first invalid assumption that IPM makes is that
it can combine any set of generic processes to produce a valid model structure. This as-
sumption leads to an underconstrained model space containing many candidates that violate
the domain expert’s expectations. The second assumption regards all process influences as
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additive, which is unrealistic in many scenarios.

The interleaved structure-type hierarchy of generic processes places two types of con-
straints on the space of candidate models. The hierarchy of process types defines mutually
exclusive modeling alternatives, whereas the subprocess hierarchy defines correct model
structures in terms of the minimal set of necessary component sub-models. This organiza-
tion contrasts IPM’s representation of models as a flat collection of generic processes, which
can be combined arbitrarily into candidate model structures.

HIPM uses heuristic beam search and knowledge-guided refinement operators to navigate
the model space. The system takes as input a hierarchy of generic processes, a set of entities
with associated variables, a set of observed trajectories of the variables and a specification
of the beam width. On each beam-search iteration, HIPM refines the current selection of
models by one step, adding the non-redundant structures back to the beam. In the first
iteration, the system generates all permitted models that exclude any optional processes.
In subsequent iterations, the refinement operator would add a single optional process to the
current model structure, which may require the addition of multiple processes, depending
on the background knowledge.

HIPM, like its predecessors, does not provide support for multi-compartmental modeling,
or other means for (spatial) structuring of complex models. In a multi-compartment model,
the model is hierarchically segregated in compartments. Each compartment denotes one
(spatial) unit of the system. Many of the compartments can be of similar nature thus
containing the same entity and process types. In order to implement a multi-compartmental
scenario in HIPM (as well as in LAGRAMGE 2.0 and IPM), one has to place all entities
and processes at the model level and distinguish the pertaining compartments by carefully
naming the entities and processes.

HIPM does not introduce a modeling language for the representation of models and
background knowledge. Instead, the models and background knowledge are expressed in
its internal representation, directly in Python. While Python is a language with very little
syntactic overhead and manages to capture the semantic relations of process-based modeling
in a fairly clean manner, it is nevertheless a programming language. Having in mind that in-
ductive process modeling tools are intended to be used not only by computer scientists, but
even more so by domain experts from diverse fields (including environmental sciences, com-
putational biology, and earth sciences among others), a conventional programming language
is not the optimal solution.

Similarly to LAGRAMGE 2.0 and IPM, HIPM uses ALG-717 with random restarts for

parameter estimation and suffers from its limitations.



20

Inductive Process Modeling



21

3 Representing Process-Based Models and Back-
ground Knowledge

Process-based modeling takes a knowledge-based approach to modeling. Process-based mod-
els (Bridewell et al., 2008) use a two-level representation combining qualitative and quanti-
tative information. At the qualitative level, a process-based model consists of entities, which
correspond to the main actors of the modeled system, and processes, which correspond to
relations between entities. At the quantitative level, each entity is described in terms of vari-
ables and constants that represent its properties, and each process is represented as a set
of equations, algebraic or differential, that quantify the relations between the entities. The
equations from all the processes in the model can be compiled to obtain a system of ordinary
differential equations, which is the ultimate quantitative representation of the system.

The two levels of knowledge representation used for process-based modeling allow for
specifying the models at different levels of abstraction. At the qualitative level, an abstract
view of the modeled system is represented, depicting only the key components of the system
and the relations between them. At the quantitative level, a detailed view of the system is
represented, which is equivalent to a system of ordinary differential equations that can be
used for further quantitative analysis of the system.

Process-based models integrate the explanatory aspect of qualitative models with the
quantitative aspect of differential equations that allow for effective simulation and predic-
tion of the behavior of the system. When dealing with dynamical systems, scientists and
engineers often refer to processes that govern system dynamics and entities that are influ-
enced by those processes. Processes causally link system variables and entities, possibly
through unobserved theoretical terms. The qualitative abstraction level of model represen-
tation corresponds to the explanatory aspect of the process-based models. On the other
hand, to allow for a quantitative analysis of system behavior, process-based models specify
a quantitative model for each process; when put together, these models yield a complete
model of the system that takes the form of a system of ordinary differential equations.

3.1 Process-Based Models and Their Components

Process-based models consist of two basic types of elements: entities and processes. Entities
represent the actors of the observed system. These actors are involved in processes that ex-
plain how entities interact, as well as what is the influence of the interactions on the involved
entities themselves. When we deal with equation-based models, entities correspond to the
variables in the equations and processes to arithmetical expressions (equation fragments).

The state of the modeled system is represented as a set of entities. Each entity corre-
sponds to one object that appears in the system. If we consider a simple lake ecosystem,
nutrients (such as phosphorus and nitrogen), as well as phytoplankton would be represented
as entities. The phenomena that occur in the system would be described by the processes
of the model. Each process in the model corresponds to a single phenomenon in the system.
For instance, the growth of phytoplankton (limited by nitrogen and phosphorus) would be a
process. This simple relation is represented in Figure 3.1(a).
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Figure 3.1: An example model of a lake ecosystem, described with (a) only one top-level process or
(b) with nested processes.
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Figure 3.2: A quantitative representation of the example model of a trophic relation in a lake
ecosystem.

Some processes that occur in the system can be more easily described in terms of several
simpler processes. We consider the later processes to be nested processes, because they
are nested within more complex enclosing processes. In our simple lake ecosystem, the
phytoplankton growth process can be defined in terms of two nested processes that capture
the limitation of phytoplankton growth by nitrogen and phosphorus, respectively. These
relations between the entities and processes in the system are depicted in Figure 3.1(b).

~—

In addition to the purely qualitative relations (such as those depicted in Figure 3.1),
process-based models provide quantitative information about the phenomena they represent.
Each entity is described with a number of properties. Some of them do not change their value
through time and are referred to as constants. Others, which change their value with time,
are called variables. For example, the phytoplankton entity has two variables, concentration
and nutrient limitation, and one constant property of mazimal growth rate. Furthermore,
the nitrogen entity can be specified with its concentration (variable) and the two constants
of half saturation (corresponding to the concentration at which the process rate halves) and
alpha (stoichiometric ratio between algal biomass and the nutrient). The same variables
and constants are used to describe the phosphorus entity.

A process definition provides quantitative description of the relation it represents in
the form of one or more equations. Each equation can contain only properties (variables
and constants) of those entities that are involved in the process of interest. For example,
the nitrogen limitation process, which involves the nitrogen and phytoplankton entities, can
only contain references to the variables and constants of nitrogen or phytoplankton. These
quantitative relations are presented in Figure 3.2.

Example 3.1 shows the representation of the entities of the simple lake ecosystem con-
ceptualized in Figure 3.2 in the formalism of process-based models. The example contains
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Example 3.1: Formal representation of the entities in Figure 3.2.

entity phyto {
vars:
conc{role: endogenous; aggregation: sum; initial: 10},
nutrientLim{aggregation: product};
consts:
maxGrowthRate = 0.5,

}

entity phosphorus {

vars:
conc{role: endogenous; initial: 3};
consts:
halfSaturation = 0.02,
alpha = 0.1;

}

entity nitrogen {

vars:
conc{role: exogenous};
consts:
halfSaturation = 0.2,
alpha = 0.7;

Example 3.2: Formal representation of the top-level process shown in Figure 3.2(a).

process growth(phyto, phosphorus, nitrogen) {
equations:
td(phyto.conc) = phyto.maxGrowthRate x phyto.conc * (phosphorus.conc / (
phosphorus.conc + phosphorus.halfSaturation) + nitrogen.conc / (nitrogen.conc
+ nitrogen.halfSaturation)),
td(phosphorus.conc) = phosphorus.alpha x phyto.maxGrowthRate * phyto.conc %
phosphorus.conc / (phosphorus.conc + phosphorus.halfSaturation);

three entities: nitrogen, phosphorus and phytoplankton(phyto). Each entity is specified with
a list of its variables (vars) and and a list of its constants (consts). These are the properties
of the entity that are important in the given modeling context.

For each variable, we specify an aggregation function, i.e., the method of aggregating
the influences of different processes on that variable. The nutrientLim variable of the phyto-
plankton entity, for example, has a product aggregation function specifying that the multiple
influences on the nutrientLim variable are to be multiplied.

Furthermore, each variable is assigned a role, which can be either exogenous or endoge-
nous. Exogenous variables are used as forcing variables and as such are considered external
to the system and not modeled within it. Endogenous variables, on the other hand, are
variables which are modeled within the system. They describe the state of the system and
appear in the system of ODEs. In addition, endogenous variables can have initial values,
which designate the value of the variable at the initial time point.

Constants are defined in a straightforward manner, by assigning a numerical value to
them.

Example 3.2 presents the main process of the system, the growth of phytoplankton,
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Example 3.3: Formalized representation of the processes in Figure 3.2 organized as nested processes.

process growth(phyto, [phosphorus, nitrogen]) {
processes:
phosphorusLim, nitrogenLim;
equations :
td(phyto.conc) = phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim,
td(phosphorus.conc) = phosphorus.alpha * phyto.maxGrowthRate * phyto.conc
phyto.nutrientLim;
}
process phosphorusLim(phyto, phosphorus) {
equations:
phyto.nutrientLim = phosphorus.conc / (phosphorus.conc + phosphorus.
halfSaturation);
}
process nitrogenLim(phyto, nitrogen) {
equations:
phyto.nutrientLim = nitrogen.conc / (nitrogen.conc + nitrogen.halfSaturation);

limited by phosphorus and nitrogen, corresponding to Figure 3.1 (a). The growth process
influences the phytoplankton concentration positively and the phosphorus concentration
negatively since phosphorus is consumed in the process. Nitrogen is also consumed, but
because its concentration is an exogenous variable, it is not modeled with an equation within
the system of ODEs. The two variables which are affected by this process are influenced by
differential equations. Note that the symbol td(z) denotes a time derivative of the variable
.

Example 3.3 shows the growth of phytoplankton modeled using two nested processes as
the conceptual model from Figure 3.1 (b). Instead of being separate arguments to the growth
process, phosphorus and nitrogen form an argument set (indicated by the square brackets).
The influences of phosphorus and nitrogen as limiting factors of the phytoplankton growth
are expressed with the two processes of phosphorusLim and nitrogenLim, which are nested
in the growth process. Both nutrient limitations are modeled using a Monod (saturation)
function and captured within the nutrientLim variable. Expressing relations with nested
processes improves the modularity of the model, making it easier to add or remove arguments
of the process because their influence is well encapsulated and clearly expressed.

The process-based model can be ‘flat’ or ‘structured’. If the model is flat, all of the enti-
ties and processes are at the top level of the system (which is the only level). The system can
also be structured through the use of compartments, organized in a tree-shaped hierarchy.
Compartments are containers for structuring a system. A system can contain one or more
compartments, or none at all, and each compartment can contain other compartments as
sub-compartments. A compartment contains entities and processes, which is its primary
function. Hence, compartments form a tree-shaped hierarchy with the whole system at the
top, which itself can be considered as a top-level compartment.

Example 3.4: A compartmental process-based model of a lake ecosystem.

compartment epi {
entity phyto {
vars:
conc{role: endogenous; aggregation: sum,; initial: 10},
nutrientLim{aggregation: product};



Representing Process-Based Models and Background Knowledge

consts:
maxGrowthRate = 0.5,
}

entity phosphorus {

vars:
conc{role: exogenous};
consts:
halfSaturation = 0.02,
alpha = 0.1;

}

process growth(phyto, [phosphorus|) {
processes:
phosphorusLim;
equations :
td(phyto.conc) = phyto.maxGrowthRate x phyto.conc * phyto.nutrientLim,
}

process phosphorusLim(phyto, phosphorus) {
equations:
phyto.nutrientLim = phosphorus.conc / (phosphorus.conc + phosphorus.
halfSaturation);

}
}

compartment hypo {
entity phyto {
vars:
conc{role: endogenous; aggregation: sum; initial: 10},
nutrientLim{aggregation: product};
consts:
maxGrowthRate = 0.5,
¥
process mortality(phyto) {
consts:
mortRate = 0.1;
equations:
td(phyto.conc) = mortRate * phyto.conc;
}

}

entity environment {
vars:
flow{role: exogenous};
consts:
epiVolume = 6000000,
hypoVolume = 20000000;
}
process mixing(epi.phyto, hypo.phyto, environment) {
equations:
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td(epi.phyto.conc) = environment.flow / environment.epiVolume x (epi.phyto.conc

hypo.phyto.conc),

td(hypo.phyto.conc) = environment.flow / environment.hypoVolume % (hypo.phyto.

conc epi.phyto.conc);
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Example 3.4 contains a compartmental model of the simple lake ecosystem. The model
contains two compartments, epilimnion (epi) and hypolimnion (hypo), which represent lay-
ers in a thermally stratified lake. The upper layer—epilimnion—contains phytoplankton
and phosphorus. The epilimnion is heated by solar radiation and contains enough light to
support phytoplankton growth, during which phosphorus is consumed. Unlike in Example
3.3, here only phytoplankton concentration is modeled and phosphorus is taken as an exoge-
nous variable. Therefore, the growth process contains only an equation for phytoplankton
concentration. The lower layer—hypolimnion—contains only phytoplankton. This layer
does not contain enough light to support phytoplankton growth and the only process which
occurs in the hypolimnion is phytoplankton decay.

We include the properties of the environment in a separate entity at the top level of
the model. This environment entity includes the flow rate between the epilimnion and
hypolimnion, where positive values indicate flow from the hypolimnion to the epilimnion and
negative values the other way around. The environment entity also contains the volumes of
the two layers (epiVolume and hypo Volume) as constants.

An important aspect in compartmental modeling is that of inter-compartmental rela-
tions. Compartments serve the purpose of grouping and organizing entities and processes.
Processes in each compartment are restricted to affecting the entities within the same com-
partment, including entities which are contained in a nested sub-compartment. The pro-
cesses that represent interactions between entities from different compartments are placed
at the same level as the interacting compartments. In Example 3.4, the mixing process
represents an inter-compartmental interaction. It models the mixing of phytoplankton from
the hypolimnion and the epilimnion as a consequence of the natural flow of water from one
layer to the other.

For each endogenous variable x in the model entities, we compile one equation with
that variable on its left-hand side. The equation is compiled by combining the effects of
all equations in the model that influence z, i.e., all equations which have z on the left-
hand side. The aggregation function used for combining the equations is specified in the
definition of z. In Example 3.3, the variable phyto.nutrientLim (the variable nutrientLim
of the entity phyto) is influenced by two equations, those from the processes of nitrogenLim
and phosphorusLim. Having in mind that the aggregation of the influences is performed by
multiplication (see Example 3.1), we obtain the following equation for phyto.nutrientLim:

phosphorus.conc

hyto.nutrientLim =
Py phosphorus.conc + phosphorus.hal fSaturation (3.1)

nitrogen.conc
X

nitrogen.conc + nitrogen.hal fSaturation

By compiling the equations for all endogenous variables, we get a system of ordinary
differential equations (ODESs). This system of ODEs is a quantitative model of the dynamical
system at hand. This model can then be used to perform model simulation and parameter
estimation.

3.2 From Process-Based Models to Background Knowledge

Entities in a process-based model often share common properties. If we compare the phos-
phorus and nitrogen entities from Example 3.1, we can see that they share similarities with
respect to their variables and constants. This is to be expected, since they are both nutrients.
Properties which hold for a number of entities are specified through objects which we call
entity templates. They are used for specifying common properties of entities. The template
captures some general knowledge that holds for many different cases and can be reused when
dealing with different specific scenarios. An entity template contains partial information for
an entity that is general and can be used for generating many entity instances.
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Similarly, if we compare the processes nitrogenLim and phosphorusLim from Example
3.3, we can see that they have equations that adhere to the same general pattern: they both
represent processes of a saturated Monod-type nutrient limitation. Therefore, it makes
sense to try to group such similar processes within some more general concepts. In analogy
to entity templates, we introduce process templates—objects that represent parameterized
recipes for creating processes. Process templates contain generic information that can be
reused for generating a number of specific process instances.

Example 3.5: A library of background knowledge for modeling aquatic ecosystems.

library AquaticLibrary;
template entity Nutrient {
vars:
conc {aggregation: sum};
consts:
halfSaturation {range: <0,inf>},
alpha {range: <0,inf>};
}
template entity PrimaryProducer {
vars:
conc {aggregation: sum},
nutrientLim{aggregation: product};
consts:
maxGrowthRate {range: <0,inf>};
}
template process Growth(pp : PrimaryProducer, ns : Nutrient<1,inf>) {
processes:
NutrientLimitation(pp, <n:ns>);
equations:
td(pp.conc) = pp.maxGrowthRate x pp.nutrientLim % pp.conc,
td(<n:ns>.conc) = n.alpha * pp.maxGrowthRate * pp.nutrientLim % pp.conc;
}
template process NutrientLimitation(pp : Phytoplankton, n : Nutrient) {
equations:
pp.nutrientLim = n.conc / (n.conc + n.halfSaturation);

The set of entity and process templates relevant to a modeling domain of interest are
collected into a library of background knowledge. Example 3.5 shows a background knowl-
edge library for modeling aquatic ecosystems. This library generalizes the modeling notions
used in the lake ecosystem model from Examples 3.1 and 3.3.

The library defines two entity templates, Nutrient and PrimaryProducer. They contain
the appropriate definitions for the variables and constants present in the entities in Example
3.1. One important difference is that the constants in the library are not bound to particular
numerical values, but instead specify a range of allowed values. Each instance of the entity
template can take an arbitrary value from the specified range. Another important difference
is that variables are not assigned roles in the library, because roles are assigned by a specific
model. Depending on the particular system at hand, the modeling scenario, and the level of
detail we want to model, a particular variable may be specified as endogenous, if modeling
it is part of the task, or we cannot directly observe its values. Otherwise, if we are not
interested in modeling the variable and we have sufficient measurements, it can be specified
as exogenous.

In addition to the two entity templates, the simple lake ecosystem library defines two
process templates: Growth and NutrientLimitation. The Growth process template gives
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Example 3.6: A process-based model of a lake ecosystem based on the library of background knowl-
edge from Example 3.5.

model lakeModel : AquaticLibrary;
entity phyto : PrimaryProducer {
vars:
conc {role: endogenous; initial: 10},
nutrientLim;
consts:
maxGrowthRate = 0.5;
}

entity phosphorus : Nutrient {

vars:
conc {role: endogenous; initial: 3};
consts:
halfSaturation = 0.02,
alpha = 0.1;

}

entity nitrogen : Nutrient {

vars:
conc;

consts:
halfSaturation = 0.2,
alpha = 0.7,

}

process growthPhyto(phyto, [phosphorus, nitrogen|) : Growth {
processes:
phosphorusLim, nitrogenLim;
}

process phosphorusLim(phyto, phosphorus) : NutrientLimitation {}
process nitrogenLim(phyto, nitrogen) : NutrientLimitation {}

a recipe for defining processes of phytoplankton growth limited by a set of nutrients and
has two arguments. The first argument is an entity of type PrimaryProducer named pp,
which represents the phytoplankton whose growth is being modeled. The second argument
is a set of entities of type Nutrient named ns, which represents the nutrients that limit the
phytoplankton growth. The specification <1, inf> denotes that the set has to contain at lest
one entity. The Growth process contains a nested process of type NutrientLimitation for each
nutrient n from the set ns as specified by the declaration: NutrientLimitation(pp, <n:ns>).
It also contains one differential equation for the concentration of the phytoplankton, and
one differential equation for each nutrient.

Having defined entity and process templates, we can use them to create suitable entity
and process instances. Fvery instance acquires all of the properties which were specified
in the template. Properties which are characteristic for the particular instance itself are
specified within the instance definition. Using the library from Example 3.5, the simple lake
model consisting of the entities from Example 3.1 and processes from Example 3.3 can be
represented as shown in Example 3.6.

It is evident that by using the templates defined in the library we obtain a concise
specification of the model. Instead of providing a complete specification of the entities and
processes in the model itself, we create instances of the templates from the library. In the
simple lake model, phosphorus and nitrogen are instances created using the Nutrient tem-
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plate, whereas phyto is created using the PrimaryProducer template. Each entity instance
contains only the variables and constants which were specified in the respective template.

The growth process, on the other hand, is an instance of the process template Growth,
having phyto as the first argument and the set of nitrogen and phosphorus as the second. The
growth process has phosphorusLim and nitrogenLim as nested processes. Their definitions
are very short, since all needed information is present in the NutrientLimitation process
template. Each process instance can have as arguments entity instances of the types specified
in the respective process template. In addition, a process instance acquires the equations
from the process template, adjusted to use the variables and constants from the entity
instances in the arguments.

In addition to entities and processes, compartments also follow the template-instance
paradigm. A compartment template defines a type of compartment. It specifies the types
of entities and processes which can be included in that type of compartment. FExample
3.7 shows a library with compartments. It resembles the library in Example 3.5 as the
definitions of Nutrient, PrimaryProducer, Growth, and NutrientLimitation are the same. It
includes another entity template Environment, which captures some general properties of
the lake. It also includes Mortality and Mizing processes.

The main difference between the libraries in Examples 3.5 and 3.7 is in the inclusion of
two compartment templates Epilimnion and Hypolimnion in the latter. Epilimnion com-
partments can contain entities of type Nutrient and PrimaryProducer and processes of type
Growth and NutrientLimitation. Hypolimnion compartments can contain only entities of
type PrimaryProducer and processes of type Mortality. Processes of type Mizing are not
contained in either type of compartments, because they represent inter-compartmental re-
lations and have to be included at the model-level instead.

Example 3.7: A library for modeling aquatic ecosystems which includes compartments.

library AquaticCompartmentalLibrary;
template entity Nutrient {
vars:
conc {aggregation: sum};
consts:
halfSaturation {range: <0,inf>},
alpha {range: <0,inf>};
}
template entity PrimaryProducer {
vars:
conc {aggregation: sum},
nutrientLim{aggregation: product};
consts:
maxGrowthRate {range: <0,inf>};
}
template entity Environment {
vars:
flow;
consts:
epiVolume {range: <1,inf>},
hypoVolume {range: <1,inf>};
}
template process Growth(pp : PrimaryProducer, ns : Nutrient<1,inf>) {
processes:
NutrientLimitation(pp, <n:ns>);
equations:
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td(pp.conc) = pp.maxGrowthRate % pp.nutrientLim % pp.conc,
td(<mn:ns>.conc) = n.alpha * pp.maxGrowthRate x pp.nutrientLim % pp.conc;
}
template process NutrientLimitation(pp : Phytoplankton, n : Nutrient) {
equations:
pp-nutrientLim = n.conc / (n.conc * n.halfSaturation);
}

template process Mortality(pp : PrimaryProducer) {
consts:
mortRate {range: <1, inf>};
equations:
td(pp.conc) = mortRate * pp.conc;
¥
template process Mixing(epiPP : PrimaryProducer, hypoPP : PrimaryProducer, env :
Environment) {
equations:
td(epiPP.conc) = env.flow / env.epiVolume % (epiPP.conc hypoPP.conc),
td(hypoPP.conc) = env.flow / env.hypoVolume x (hypoPP.conc epiPP.conc);
¥
template compartment Epilimnion {
entities:
Nutrient, PrimaryProducer;
processes:
Growth, NutrientLimitation;
}

template compartment Hypolimnion {
entities:
PrimaryProducer;
processes:
Mortality;

We use compartment templates to create compartment instances. As compartments are
containers for entities and processes, each compartment instance can only contain entity and
process instances of the types specified in its compartment template. Example 3.8 shows
the same model as in Example 3.4, reformulated to use the templates from the library in
Example 3.7. As illustrated before, the model defined with the use of a library is much
shorter and more concise.

3.3 Hierarchical Organization of Background Knowledge

Entity templates can be arranged into inheritance trees. The more general properties are
placed in the entity templates which are higher up the tree. This enables the entity templates
which are lower in the tree to inherit the properties of their ancestors and provides a modular,
clean, and reusable design of the entity templates. Figure 3.3(a) shows how the entity
templates from Example 3.5 can be arranged into an inheritance tree for the library. Note
that, in Example 3.5, Nutrient and Phytoplankton shared the common variable concentration
(conc), which has now moved to the EcosystemEntity. Nutrient and Phytoplankton are
now subtypes of EcosystemEntity and thus inherit its properties, i.e., they inherit the conc
variable.

In the model in Example 3.6, nitrogenLim and phosphorusLim have the same functional
form—that of a Monod function. In practice, however, they can have any of a number of
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Example 3.8: The compartmental process-based model of a lake (Example 3.4), expressed by using
the template entities, processes, and compartments from a background knowledge library (Example
3.7).
model lakeCompartmentalModel : AquaticCompartmentalLibrary;
compartment epi : Epilimnion {

entity phyto : PrimaryProducer {

vars:
conc{role: endogenous; initial: 10},
nutrientLim;
consts:
maxGrowthRate = 0.5,
}

entity phosphorus : Nutrient {

vars:
conc{role: endogenous; initial: 3};
consts:
halfSaturation = 0.02,
alpha = 0.1;

}

process growth(phyto, [phosphorus]) : Growth {
processes:
phosphorusLim;
}

process phosphorusLim(phyto, phosphorus) : NutrientLimitation {}
}
compartment hypo : Hypolimnion {
entity phyto : PrimaryProducer {
vars:
conc{role: endogenous; initial: 10},
nutrientLim;
consts:
maxGrowthRate = 0.5,
¥
process mortality(phyto) : Mortality {
consts:
mortRate = 0.1;

}
}

entity env : Environment{
vars:
flow{role: exogenous};
consts:
epiVolume = 6000000,
hypoVolume = 20000000;

}

process mixing(epi.phyto, hypo.phyto, env) : Mixing {}
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NutrientLimitation

EcosystemEntity

pp : Phytoplankton<1,1>
n : Nutrient<1,1>

/N N

Nutrient PrimaryProducer MonodNutrientLim Monod2NutrientLim ExponentialNutrientLim

+ conc <0,+inf>

* nutrientLim <-inf,+inf>
halfSaturation <0,+inf> pp.nutrientLim = pp.nutrientLim = pp.nutrientLim =
alpha <0,+inf> maxGrowthRate <0,+inf> n.conc/(n.conc+n.halfSaturation) n.conc”2/(n.conc”2+n.halfSaturation) 1-exp(-n.halfSaturation*n.conc)

Figure 3.3: Hierarchies of templates in the aquatic ecosystem library. (a) A hierarchy of entity
templates; (b) A hierarchy of process templates.

different functional forms, including Monod, Monod? or an exponential function. We can
arrange the limitation processes into a hierarchy like the one presented in Figure 3.3(b)
(Todorovski et al., 2005). The process template NutrientLimitation is at the root of the
hierarchy. It does not supply any functional form by itself, but rather serves to organize the
different nutrient limitation functions which are provided. Each alternative process template
has NutrientLimitation as an ancestor in the inheritance tree of process templates.

Using this modeling approach, we can construct a library with an inheritance tree of
entity types and process alternatives. Example 3.9 gives a hierarchical form of the aquatic
ecosystem library. The corresponding process-based model is given in Example 3.10.

Example 3.9: A hierarchical version of the aquatic ecosystem library.

library AquaticHiearchicalLibrary;
template entity EcosystemEntity {

vars : conc {aggregation: sum; unit: "kg/m"3”; range: <0,inf>};
¥

template entity PrimaryProducer: EcosystemEntity {
vars:
nutrientLim {aggregation: product};
consts:
maxGrowthRate{ range: <0,inf>; unit: ”1/(day)”;
¥
template entity Nutrient : EcosystemEntity {
consts:
halfSaturation {range: <0,inf>},
alpha {range: <0,inf>};
}
template entity Environment {
vars:
flow,
¥
template process Growth(pp : PrimaryProducer, ns : Nutrient<l1, inf>) {
processes:
NutrientLimitation(pp, <n:ns>);
equations:
td(pp.conc) = pp.maxGrowthRate % pp.nutrientLim % pp.conc,
td(<n:ns>.conc) = n.alpha x pp.maxGrowthRate x pp.nutrientLim * pp.conc;
¥
template process NutrientLimitation(pp : PrimaryProducer, n : Nutrient) {}
template process MonodNutrientLim : NutrientLimitation {
equations:
pp-nutrientLim = n.conc / (n.conc + n.halfSaturation);
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}

template process Monod2NutrientLim : NutrientLimitation {
equations:
pp.nutrientLim = n.conc * n.conc / (n.conc * n.conc + n.halfSaturation);
}
template process ExponentialNutrientLim : NutrientLimitation {
equations:
pp.nutrientLim = 1 exp(n.halfSaturation * n.conc);
}
template process Mortality(pp : PrimaryProducer) {
consts:
mortRate {range: <1, inf>};
equations:
td(pp.conc) = mortRate % phyto.conc;
}
template process Mixing(epiEntity : EcosystemEntity, hypoEntity : EcosystemEntity,
env : Environment) {
equations:
td(epiEntity.conc) = env.flow % (epiEntity.conc hypoEntity.conc),
td(hypoEntity.conc) = env.flow * (hypoEntity.conc epiEntity.conc);
}
template compartment Epilimnion {
entities:
EcosystemEntity;
processes:
Growth, NutrientLimitation;
}
template compartment Hypolimnion {
entities:
PrimaryProducer;
processes:
Mortality;

Example 3.10: A process-based model of a lake ecosystem based on the hierarchical version of the
aquatic ecosystem library.

model lakeHierarchicalModel : AquaticHierarchicalLibrary;
compartment epi : Epilimnion {
entity phyto : PrimaryProducer {
vars:
conc{role: endogenous; initial: 10},
nutrientLim;
consts:
maxGrowthRate = 0.5;
}

entity phosphorus : Nutrient {

vars:
conc{role: endogenous; initial: 3};
consts:
halfSaturation = 0.02,
alpha = 0.1;
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process growth(phyto, [phosphorus|) : Growth {
processes:
phosphorusLim;

}

process phosphorusLim(phyto, phosphorus) : MonodLimitation{}
¥
compartment hypo : Hypolimnion {
entity phyto : PrimaryProducer {
vars:
conc{role: endogenous; initial: 10},
nutrientLim;
consts:
maxGrowthRate = 0.5;
¥
process mortality(phyto) : Mortality {
consts:
mortRate = 0.1;

}
}

entity env : Environment{
vars:
flow{role: exogenous};
consts:
epiVolume = 6000000,
hypoVolume = 20000000;
}

process mixing(epi.phyto, hypo.phyto, env) : Mixing {}

Inheritance is a notion that is well established in the theory of programming lan-
guages (Mitchell, 1996; Gordon, 1988). Object-oriented programming languages (Abadi
and Cardelli, 1998; Gunter and Mitchell, 1994) use classes to structure the information used
by the programs. In the case of single inheritance (as opposed to multiple inheritance), each
class can inherit form one superclass. The properties, such as fields and methods, defined in
the superclass are inherited to the subclass. In our proposed formalism, entity and process
templates behave like classes in an object-oriented programming language and support the
inheritance of properties in a analogous way.
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4 Process-Based Modeling Formalism

In this chapter, we present a formalization of process-based models and background knowl-
edge. The principal elements of the formalism were introduced in Chapter 3. We also in-
troduced the rules that are used to build process-based models and libraries of background
knowledge. For a library and a model to form a valid representation, they must satisfy a
number of rules and constraints.

This chapter introduces a formal notation suitable for precise, mathematically sound,
definitions of the key concepts of the process-based formalism. Process-based models and
their components—entities, processes and compartments—as well as libraries and template
entities, processes and compartments are then defined. The use of this formal notation and
the provision of formal definitions simplify the task of expressing the properties of process-
based models and libraries.

4.1 The Notation

We first present the notation for the basic concepts of process-based modeling, then introduce
some auxiliary notation.

4.1.1 Notation for the Basic Concepts

Process-based libraries and their components are represented with the following sets of
abstract concepts:

e L, the set of all libraries,

e TE, the set of all entity templates,

e TP, the set of all process templates,

e T, the set of all compartment templates,
e TV, the set of all variable templates,

e TC, the set of all constant templates,

e T O, the set of all equation templates,

Process-based models and their components are represented with the following sets of
abstract concepts:

M, the set of all models,
&, the set of all entities,
P, the set of all processes,

IC, the set of all compartments,
YV, the set of all variables,
C, the set of all constants,

9, the set of all equations,
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In the remainder of this section, we will give a formal mathematical definition for each
concept from the lists above. The first subsection defines libraries and templates, while
the second formalizes models and instances. Each concept is defined in term of its general
properties and formal specification of its relation to other concepts. The notation allows us
to precisely specify the template instantiation by providing formal definitions of the relations
between templates and their instances.

4.1.2 Auxiliary Notation

Before we describe the elements of the formalism, we introduce some auxiliary notation.

Let A be a set. We use A" to denote the Cartesian product A x --- x A, where A = @,

H,—/
n times
and A' =A;

Furthermore, we denote the closure of A with A* =J,,_,A"; it represents the set of all
possible tuples of the elements of A.

We use &(A) to denote the power set of A, i.e., the set of all possible subsets of A, and
|A| to denote the cardinality (number of elements) of A.

Let X = (x1,x2,...,X,) be a tuple. We denote the length of X by |X| = n.

Let Ny = {1,2,...,k} be the set of the first k integers. The set of all permutations of Ny
is denoted Sy.

Let N2 = {n € Ngla <n < b}, a,b € Ny be the closed integer interval between a and b.

Let [N] = {Nf|a,b € NAa < b} be the set of all possible integer intervals.

Let R C A x A be a relation in A. The transitive closure of R is denoted by R* =, R",
where R!' =R, and for n > 0, R"*! = RoR", where o denotes the operation of composition of
relations.

Let f:A — Z(A) be a function over a set A that maps an element of A into a subset
of A. We define a sequence of functions: f'(x) = f(x), f2(x) = {zlz€ f'(y) Ay € fl(x)},
) ={zdze L) Ay e f2(x)}, ..., ff(x) ={zz€ f'(y) Ay € fF-1(x)}. We then denote the
transitive closure of the function f as f*=U,_; /"

Let X = (x1,x2,...,x,) and ¥ = (y1,y2,...,¥m) be two tuples of length n and m respectively.
We denote X C Y if the first n elements in Y are the same as in X, i.e., (Vi e N})y; = x;.

Let f:A— X and g: B — X be two functions such that A C B. Each function can be
observed as a set of pairs (a, f(a)) and (b,g(b)). We denote f C g when the set of pairs of f
is a subset of the set of pairs of g, i.e., {(a,f(a))la € A} C {(b,g(b))|b € B}.

4.2 Libraries and Templates

4.2.1 Libraries and Compartment Templates

A library is a named collection of entity, process and compartment templates.
Mathematically, each L € L is fully specified with the following functions:

entities : L — P (TE) (4.1a)
processes : L — P(TP) (4.1b)
compartments : L — Z(TK) (4.1c)

In process-based formalism, a library is specified with the following syntax:

library Name;
template_defs

where template_defs is a sequence of entity, process and compartment definitions.

template_defs::= (entity_template_def|process_template_def|compartment_template_def)x*
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Entity, process and compartment templates can be defined in an arbitrary order. Each
template type is specified with a different keyword combination, therefore, no ambiguity can
arise.

A compartment template is, just as a library, a named collection of entity, process
and compartment templates.

Mathematically, each TK € T K is fully specified with the following functions:

entities : TIC — Z(TE) (4.2a)
processes : TIC — Z(TP) (4.2b)
compartments : TIC — 2 (TK) (4.2¢)

In the process-based formalism, a compartment template is specified with the following
syntax:

template compartment Name {
entities: TE1, TE2, ...,
processes: TP1, TP2, ...;
compartments: TK1, TK2, ...;

}

where TE1, TE2, ... are identifiers of existing entity templates, TP1, TP2, ... are identifiers
of existing process templates, and TKI1, TK2, ... are identifiers of existing compartment
templates.

The order in which entities, processes, and compartments are specified does not have any
influence. If the compartment template does not contain any entity templates, the entities
part can be omitted. Similarly, processes and compartments can be omitted if there are no
process or compartment templates, respectively.

4.2.2 Entity Templates

An entity template is a named collection of variable templates and constant templates.
Mathematically, each TE € T & is specified with the following functions:

variables : TE — Z(TV) (4.3a)
constants : TE — P (TC) (4.3b)

In the process-based formalism, an entity template is specified with the following syntax:

template entity Name [: SuperEntity]| {
vars:
template_variable_def (,template_variable_def)x;
consts:
template_constant_def (,template_constant_def)x;

}

where template_variable_def is a variable template definition and template_constant_def is
a constant template definition.

All variables and constants have a unique name by which they are identified. The order in
which variables and constants are defined does not play any role, because they are identified
by their name, not by their position. If there are no variables or constants in an entity
template, we can omit the vars or consts sections, respectively.

The definition of an entity template contains an optional declaration of a SuperEntity.
The role of the SuperEntity is discussed in detail later on. In short, the entity template
inherits variable and constant templates from its SuperEntity template.

A variable template is a part of the specification of a variable that is contained in
an entity template. The name of the variable template is unique within the specification
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of the entity template, but need not be unique across multiple entity templates. Therefore,
when referring to a certain variable, it has to be clear to which entity template this variable
belongs.

The variable template is characterized by its range, unit and aggregation function. Each
TV € TV is specified with the following functions:

range : TV — [a,b], a,beR (4.4a)
unit : TV — A*, where A is an alphabet set (4.4b)
aggregation : TV — (R* — R) (4.4c)

In the process-based formalism, a variable template is specified with the following syntax:

name {
range: <lower_bound, upper_bound>;
unit: string_value;
aggregation: aggregation_name;

}

The range of a variable is the interval in which the values of the variable can fluctuate
through time. The unit is a string designating the units in which this variable is measured.
The range and unit are principally for annotation purposes.

The aggregation function is a function that maps any tuple of real numbers to a single
real number. It is used for combining all influences from processes that have as an argument
the entity containing the variable. The aggregation function (agg) has to be commutative
so that the order in which the influences from individual processes are specified does not
matter:

(Vn € N) (V(xl,xz,...,xn) S N") (V(il,iz,...,in) € S,,)agg(x,-l,xh,...,xin) = agg(x1,X2,...,Xy)
(4.5)

The process-based formalism includes the following aggregation functions: sum, product,
average, minimum and mazimum.

A constant template is specified similarly to a variable template. The constant tem-
plate is characterized by its range and unit. Each TC € TC is specified with the following
functions:

range : TC — [a,b], a,b€R (4.6a)
unit : TC — A*, where A is an alphabet set (4.6b)

In the process-based formalism, a constant template is specified with the following syn-
tax:

name {
range: <lower_bound, upper_bound>;
unit: string_value;

}

4.2.3 Inheritance in Entity Templates

In each library, there is one special entity template denoted as TE( such that variables(TEy) =
@ and constants(TEy) = @.

The super® relation is defined between two entity templates, i.e., super® C TE x T E with
the following property

(VTE eTE\ {TE0}> (3! TEq,p € Tg)superE(TEsup, TE) (4.7)
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In other words, every entity template TE other than TEy has a single super entity—TEy,j,.
We read super®(A,B) as A is a super entity template of B.

The representation of an entity template in the process-based formalism described pre-
viously, contained a reference to SuperEntity. The SuperEntity is the super entity of the
entity template being described.

The entity templates in a library form a taxonomy of entity templates in the form of a
rooted tree. This tree has TEj as its root and links defined through the super® relation. Each
entity template other than TE is connected to the root of the tree (TEp) through exactly
one path:

(VTE cTE\ TEO) (El!k c NO) (az (a1,a2,...,a5) € Tgk)

(4.8)
super®(TEg,ay) N super®(ay,az) A --- A super®(ay, TE)
The inverse relation or super® is the sub” relation, formally defined as:
sub®(A,B) <= super”(B,A) (4.9)

We read sub®(A,B) as A is a sub entity template of B. While every entity template other
than TE( has a unique super entity template, it can have any number of, including zero, sub
entity templates.

The super® relation is used to define the ancestor® relation which is a transitive closure
of super®, i.e., ancestor” = (super®)*

We define descendant® as an inverse relation of ancestor® as:

descendant”(A,B) <= ancestor”(B,A) (4.10)

Each entity template inherits the variables and constants from its super entity template.
The inheritance property is captured in the following requirement:

(VTE\, TE> € TE )super® (TE), TE) (4.11)
= variables(TE,) C variables(TE;) A constants(TE}) C constants(TE)

In the process-based formalism, variables and constants are not redeclared in the suben-
tity template. Moreover, an entity template cannot define any variable and constant with a
name that exists in its superentity or any ancestor entity.

4.2.4 Process Templates

A process template relates entity templates. It provides details and quantifies this relation
and provides constraints that the relation must satisfy. Each process template is character-
ized with its arguments, constants, equations, and nested processes.

A process template is defined with the following general syntax:

template process Name [( Arguments )] [ : SuperProcess| {
consts:
template_constant_def (,template_constant_def)x;
equations:
template_eq_def (,template_eq_def)x;
processes:
nested_processes_list;

To illustrate the definition of a process template, we use the specification of the phyto-
plankton growth process introduced in Example 3.5:
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template process Growth(pp : PrimaryProducer, ns : Nutrient<1,inf>) {
processes:
NutrientLimitation(pp, <n:ns>);
equations:
td(pp.conc) = pp.maxGrowthRate % pp.nutrientLim * pp.conc,
td(<mn:ns>.conc) = n.alpha * pp.maxGrowthRate % pp.nutrientLim % pp.conc;

In the following sections we describe each part of the definition of a process template.

Arguments of Process Templates The arguments of a process template specify which
types of entities can be involved in the process. A process can contain zero, one or more
arguments. FEach argument of a process template serves as a constraint for the arguments
of the process instances which will be created from this template.

The arguments are described with two mappings, one designating the allowed type of
the argument and one designating the allowed argument cardinality:

arguments” : TP — TE*, types of the arguments of each process template (4.12a)
arguments® : TP — [N]*, cardinalities of the arguments of each process templafd.12b)

The number of argument types and cardinality has to be consistent:

(VTP € T’P) larguments™ (TP)| = |arguments®(TP)| (4.13)

In the process-based formalism, the arguments of a process template are defined with
the following syntax:

(argumentSpecl, argumentSpec2, ..., argumentSpecN)
where
argumentSpec ::= argumentName : argument Type[<minCard, maxCard> | <card>]

and argumentName is an argument identifier used in the body of the process template and
argument Type is the entity template specifying the type of the argument (the argument has
to be an instance of that entity template). The last part of the specification designates
the allowed cardinality. Cardinality is specified with lower and upper bound as the interval
<minCard, maxCard>. However, if the lower and upper bound on the cardinality is the
same, then the definition of cardinality can be shortened to <card>. If both the lower and
upper cardinality of the argument is 1, then the cardinality declaration can be omitted, as
1 is the default cardinality for arguments. The definition of an argument then becomes:

argumentName : argumentType
In the Growth process template presented above, the argument specification is as follows:
(pp : PrimaryProducer, ns : Nutrient<1,inf>)

which means that the Growth process contains two arguments: the first named pp of type
PrimaryProducer and implied cardinality 1, and the second argument named ns of type
Nutrient and cardinality from 1 to infinity.

The Growth process has the following mappings for the arguments®™ and arguments® func-
tions associated to it:

arguments” : (PrimaryProducer, Nutrient) (4.14a)
arguments® : ({1},N) (4.14b)
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Constant Templates Process templates contain constants which are concepts of the same
type as in entity templates.

constants : TP — Z(TC) (4.15)

Which means that the constants mapping is defined for both T& and TP.

Variables and constants in process templates The arguments of a process template
influence the equations and nested processes of the process template. In order to facilitate
the definitions of equations and nested processes, we define two auxiliary mappings: arg™
and arg™®.

For each process template, arg™ specifies the set of all template variables from the
arguments of the process. In order to identify them, we need to know the index of the
argument and the template variable:

arg™ (TP) = {(i, TV) e Nx TV‘i € N‘largumemT(TP” ATV € variables (arguments" (TP);) } (4.16)

For each process template, arg™ specifies the set of all template constants from the
arguments of the process, defined in a similar manner as arg™:

arg"™®(TP) = {(i, TC) e Nx TC’i € NllargumemsT(TP)‘ NTC € constants (arguments" (TP);) } (4.17)

In the case of the Growth process (assuming that Nutrient and PrimaryProducer are
defined as in Example 3.5), the arg™ and arg™ functions yield the following values:

arg™ : {(1,conc), (1,nutrientLim), (2,conc)} (4.18a)
arg™® : {(1,maxGrowthRate), (2, halfSaturation), (2, alpha) } (4.18b)

Equation Templates Process templates contain tuples of equation templates:
equations : TP — T Q" (4.19)

Equations are described through five mappings defined over the set of equation templates.
In the following definitions, TP is the process template that contains the equation and k
can be any non-negative integer, the value of which is the same across all definitions.

type : T Q — {algebraic, differential } (4.20a)

lhs : TQ — arg"” (TP) (4.20b)
function : TQ — (RF — R) (4.20c)
inputs : TQ — (N’f — (arg™ (TP) Uarg"(TP) U constants(TP))) (4.20d)
iterated : TQ — N§ (4.20e)

Each equation template can refer to an algebraic or a differential equation, which is
specified with the type function. The left-hand side of the equation consists of a template
variable from an argument of the template process, i.e., an element of arg™, which is speci-
fied with the lhs function. On the right-hand side of the equation, we distinguish two main
components: the mathematical functional form of the right-hand side, and the variables
and constants that appear on the right-hand side. The functional form of the right-hand
side is specified with the mapping function. The functional form can be any mathemati-
cal function. In the process based formalism, we support functions that are expressed as
formulas containing the following operators and functions: unary negation (—), addition
(+), subtraction (—), multiplication (x), division (/), sine (sin), cosine (cos), signum (sign),
power (pow), minimum (min), maximum (max), exponential (exp), natural logarithm (log)
and common logarithm (log10). The function mapping thus specifies a mathematical func-
tion of k inputs. Each of the k inputs can be a variable or a constant template from the
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arguments of the process or a local constant template from the process. The inputs mapping
maps each input positions to a variable or constant template that is used as an input at the
corresponding position.

If we look at the first equation of the Growth process (denote it as ¢):

td(pp.conc) = pp.maxGrowthRate % pp.nutrientLim * pp.conc,

then this is a differential equation—type(q) = differential, it has as a left-hand side the conc
variable of the first argument (pp)—Ihs(q) = (1,conc), the right-hand side has three inputs—
k = 3, the functional form of the right-hand side is a multiplication of three numbers—
x1*xp*x3, and the mappings of inputs to variables and constants is given with the following
scheme:

1 2 3 (4.21)
(1, maxGrowthRate) (1,nutrientLim) (1,conc) '

Iterators We mentioned that an instance process argument can contain a set of instance
entities. The number of elements in the set depends on the system we are modeling. Within
the library, we allow sets of entities as arguments with the specification of cardinality of
the suitable template process argument. Sometimes, a need arises to make statements that
must hold for every instance in the argument set, without knowing the number of instances
in the set. To this end, process-based modeling formalism employs iterators. They allow
us to make a statement for every entity in an argument set, but also to make multiple
instances of a given template, where each instance corresponds to one of the elements from
the argument set. We can use iterators with template equations and nested processes.

The equation template modeling the dynamic change of the nutrient concentration is
an example of an iterated template. The iterator is specified with the construct <n:ns>,
which denotes that the process template specifies one equation for each element n of the set
of nutrients ns (we say that the equation is iterated over ns).

To illustrate the use of iterators, we look at the equation for nutrient concentration in
the Growth process:

td(<n:ns>.conc) = n.alpha * pp.maxGrowthRate % pp.nutrientLim % pp.conc;

The mappings for this equation are defined with:

type : differential (4.22a)

lhs : (2,conc) (4.22b)

function : —xj * xp * X3 * X4 (4.22¢)
. . 1 2 3 4

HpuLs - ((Z,alpha) (1,maxGrowthRate) (1,nutrientLim) (1,conc)> (4.22d)

The definition of the growthPhyto process instance from Example 3.6 relies on Growth
process template:

process growthPhyto(phyto, [phosphorus, nitrogen|) : Growth {
processes:
phosphorusLim, nitrogenLim;

The ns argument of the Growth process template is populated with the two-element
set [phosphorus, nitrogen] in the instance process growthPhyto. The template equation for
nutrient concentration:

td(<n:ns>.conc) = n.alpha * pp.maxGrowthRate * pp.nutrientLim % pp.conc;

then transforms to two equations:



Process-Based Modeling Formalism 43

td(phosphorus.conc) = phosphorus.alpha * pp.maxGrowthRate % pp.nutrientLim * pp.
conc;
td(nitrogen.conc) = nitrogen.alpha * pp.maxGrowthRate x pp.nutrientLim x pp.conc;

Note that each template equation can include at most one iterator.

The variables or constants used in an equation have to come from arguments of the
process with cardinality one. Otherwise, we would not know which variable or constant
should be used in the equation. The exception is that the variables and constants can come
from an argument with an arbitrary cardinality, if this argument is used as an iterator for
the equation. In this case, for each instance of the argument there is one equation with the
suitable variables and constants.

Mathematically, the following property holds for equation templates (where n is the
number of inputs to the equation):

<VTQ = Tg) <Vi c N’f)inputs(TQ)(i) = (k,T) € arg™(TP)Uarg™(TP) (4 93)
= arguments®(TQ); = {1} V iterated(TQ) = k

Nested Processes Nested processes are used to decompose a large and complex process
into several smaller processes. A process can contain an arbitrary number of nested pro-
cesses. Each nested process can in turn contain its own nested processes. The processes
which are not nested in any other process are called top-level processes.

All process templates are defined at the library level. When specifying nested processes,
we reference existing process templates. In addition to the process template, we also provide
mappings of the arguments of the nested process to the arguments of the process in which
the nesting occurs.

To facilitate the definition of the mapping of arguments between the nested and contain-
ing process, we define a mapping nested** : TP — 2 (N?), which for each process templates
defines an index set that gives unique identifiers to all argument positions of nested processes.

Let TP € TP be a process template. Then:

nestedARG(TP) — {(l, ]) e Nz‘l c N\lpmcessesT(TP)\ je N\largumentsT(PmcessesT(TP)iﬂ} (424)

In other words, it is a set of pairs, where the first element is the index of the nested
process and the second element is the index of the argument within the nested process.
Nested processes are described through the following mappings:

processes’ : TP — TP*, types of the nested processes (4.25a)
processes™

. 3 \ 15" (TP)]
TP — (nestedARC(TP) — N ),

mapping between the arguments of the nested processes and the arguments of TP
(4.25b)

processesl TP <N\1processes'r(TP)\ - <N\largumems"‘(TP)| U {0})) : (425C)

iterators of the nested processes

We illustrate nested processes with the Growth process template from Example 3.9:

template process Growth(pp : PrimaryProducer, ns : Nutrient<1, inf>) {
processes:
NutrientLimitation(pp, <n:ns>);
equations:
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The Growth process template contains nested processes of type NutrientLimitation. The
first argument to NutrientLimitation is the same as the first argument to Growth, designated
as pp. The second argument of NutrientLimitation is iterated for all entities in ns, which
means that there will be as many nested processes of type NutrientLimitation as entity
instance in the ns argument in the process instance crated from this template.

Since the arguments of each nested process are taken from the arguments of the con-
taining process, they must match in type and cardinality.

We can illustrate this with the NutrientLimitation process template from Example 3.9:

template process NutrientLimitation(pp : PrimaryProducer, n : Nutrient) {}

We can see that the first argument of the Growth process and the first argument of the
NutrientLimitation process are both of type PrimaryProducer and both have cardinality
one. The second argument of Growth and the second argument of NutrientLimitation are
of the same type—Nutrient, but have different cardinalities. However, the reference of
NutrientLimitation as a nested process of Growth, iterates across all instances in the second
argument, designated with the iterator <n:ns>.

Mathematically, this requirement is formalized as:

| arguments™ (TP) |

<\V/TP c TP) (Vl c N|1processesT(TP)|)ﬁ — processesT(TP),- — <v] e Nl >
(k = processes™ (TP)(i, j) A (descendantE(argumentsT(7/"1\”).,-,argumem‘sT(TP)k)

A (arguments® (TP); C argumentsc(ﬁ)j V processes' (TP); = k)) )

(4.26)

Cyclic Nesting of Process Templates The process-based formalism does not allow
for cyclic nesting of process templates. The nesting of process templates can therefore be
regarded as a taxonomy.

In order to formally express this property, we define an auxiliary mapping processes
which provides the same information as processes™, but in a form of a set instead of a tuple:

|processes™ (TP))|
(VTP € 'T’P) processes(TP) = U processes" (TP); (4.27)

i=1

Its transitive closure processes™ gives the set of all process templates that can be nested
in the given process template at any level of nesting. In order to prevent cyclic nesting,
we need to ensure that whenever a process template appears as a nested process of another
process template (at any level of nesting), the second process template does not appear as
a nested process of the first process:

(VTPl,TPz € T’P) TP, € processes* (TP1) = TP, ¢ processes” (TP») (4.28)

4.2.5 Inheritance in Process Templates

Similarly to the entity templates, process templates are also organized in an inheritance
hierarchy. In each library, there is one special process template denoted as TPy such that
arguments(TPy) = &, constants(TPy) = &, processes(TPy) = @ and equations(TPy) = &.

The definition of the super® relation extends to process templates. It is defined between
two process templates, i.e., super” C TP x TP with the following property:

(VTP eTP\ {TPO}) (3! TPy, € TP)superP(TPsup, TP) (4.29)
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Every process template TP other than TPy has a single super process—71P,,. When A
and B are process templates, we read super”(A,B) as A is a super process template of B.
The definition of a process template in the process-based formalism contained an optional
reference to SuperProcess. The SuperProcess is the super process of the process template
being described. If the specification of super process is omitted from the definition of a
process template, then it is assumed that TPy is its super process.

The process templates in a library form a taxonomy of process templates in the form of
a rooted tree. This tree has TPy as its root and links defined through the super® relation.
Fach process template other than TP is connected to the root of the tree through exactly
one path:

(vrp e TP\ TP) (31k € No) (Bt (@, 2, . ) € TP*)

(4.30)
super” (TPg,ay) A super”(ay,az) A -+ A super” (ay, TP)

We extend the notions of sub”, ancestor® and descendant” relations to process templates.
They are defined analogously as for entity templates.

sub”(A,B) <= super"(B,A) (4.31a)
ancestor” = (super”)* (4.31Db)
descendant” (A,B) <= ancestor’(B,A) (4.31¢)

Each process template inherits the arguments, constants, equations and nested processes
from its super process template. The inheritance property is captured in the following
requirement:

(VTPl,TPz e T’P)superP(TPl,TPg) —

arguments(TPy) C arguments(TP;) A
constants(TPy) C constants(TP;) N
equations(TPy) C equations(TP3) N
processes(TPy) C processes(TP»)

(4.32)

4.3 Models and Instances

Models represent named collections of instances. They contain entity and process instances
organized in compartment instances. Entity instances, in turn, contain variable and constant
instances. Process instances, on the other hand, contain constant and equation instances.
Each instance in a model has a template which serves as the basis for the creation of the
object. It is specified with the function template(.). This function maps the object to a
corresponding object from the library.

4.3.1 Models

A model is a collection of entities, processes and compartments. Each M € M is described
with the following functions:

template : M — L (4.33a)
entities : M — P (E) (4.33b)
processes : M — P (P) (4.33c)
compartments : M — Z(K) (4.33d)

In the process-based formalism, a model is defined with the following syntax:
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model modelName : LibraryName;
instance_defs

where instance_defs is a sequence of entity, process and compartment instance definitions.
instance_defs::= (entity_instance_def | process_instance_def | compartment_instance_def)x

Entity, process and compartment instances can be defined in an arbitrary order. Each
instance type is specified with a different keyword, therefore, no ambiguity can arise.

A model has a library object as a template. Moreover, the entity, process and compart-
ment instances contained in the model have their templates in the library, which serves as
a template for the model. Mathematically, the following properties must hold:

(VE € entities(M )) (EITE € entities(template(M )))template(E )=TE (4.34a)
(VP € processes(M )) <3TP € processes(template(M )))template(P) =TP (4.34b)

(VK € compartments(M )) (EITK € compartments(template(M )))template(K ) = TK4.34c¢)

4.3.2 Compartments

A compartment is very similar to a model and acts like a mini-model. It also consists of
entities, processes and nested compartments.

template : IC — TIK (4.35a
entities : IC — P (E) (

processes : IC — Z(P) (4.35¢

compartments : IC — Z(K) (4.35d

In the process-based formalism, a compartment is defined with the following syntax:

compartment compartmentName : TemplateCompartment {
instance_defs

}

where compartmentName is the name of the compartment, TemplateCompartment is the
name of the compartment template and instance_defs has the same meaning as above.

Compartments can be nested in other compartments, forming a taxonomy of nested
compartments. The topmost compartments are at the level of the model. The set of models
and compartments MU together with the compartments function form a set of rooted
trees (a forest) where the roots of the trees are models.

4.3.3 Identifiers of Instances

Two entities that appear in the same model as top-level entities or appear in the same
compartment have to have different names, because their names are used as unique identifiers
within the model or compartment. The same rule applies to processes and compartments.
Entities (processes and compartments) that are contained in different compartments can
have the same name, because they can be identified by their qualified name.

Identification of instances in the model works in a similar fashion to identification of files
on a file system. Each instance has its short name which is the name with which it is defined
and consists of a single identifier. This is equivalent to a filename of a file. In addition to a
short name, each instance can be identified by its fully qualified name which consists of the
simple names of all concepts in which the variable is nested separated by a dot.
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4.3.4 Entities

An entity is a named collection of variables and constants. Mathematically, each E € £ is
specified with the following mappings:

template : € — TE (4.36a)
variables : € — 'V (4.36b)
constants : € — C (4.36¢)

In the process-based formalism, an entity is defined with the following syntax:

entity entityName : TemplateEntity {
vars:
instance_variable_def (,instance_variable_def);
consts:
instance_constant_def (,instance_constant_def)x;

}

where instance_variable_def is a variable instance definition and instance_constant_def is a
constant instance definition.

Each entity instance must contain the same variables and constants as its template. The
order in which they are provided, however, is not important and can differ in the entity
instance and entity template. There is a one-to-one correspondence between variables(E)
and variables(template(E)) on one hand and constants(E) and constants(template(E)) on the
other:

<VV € variables(E )) (3' TV € variables(template(E )template =TV  (4.37a)
(VTV € variables(template(E ))) (EI' V € variables(E )template =TV  (4.37b)
(VC € constants(E )) (EI' TC € constants(template(E )template =TC (4.38a)
(‘V’TC € constants(template(E ))> (EI‘C € constants(E )template =TC (4.38Db)

Variables

A variable is characterized with its initial value, role, value, range, unit, and aggregation
function.

template : YV — TV (4.39a)
range : V — [a,b], a,b € R (4.39b)

unit : YV — A*,  where A is an alphabet set (4.39¢)
aggregation : YV — (R* — R) (4.39d)
role : YV — {endogenous,exogenous} (4.39)

initial : YV — R (4.39f)
value : ¥V — (R — R) (4.39g)

The range, unit, and aggregation function of each variable are the same as in its template.

range(V) = range(template(V)) (4.40a)
unit(V) = unit(template(V')) (4.40b)
aggregation(V) = aggregation(template(V)) (4.40¢)

The role of the variable can be either exogenous or endogenous (Figure 4.1). Exogenous
variables are input variables that are used as forcing influences to the system. They are not
modeled within the system, their behavior through time comes from external measurements.
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role

exogenous endogenous

auxiliary state

Figure 4.1: Taxonomy of roles of model variables

Endogenous variables, on the other hand, are modeled within the system. Each endogenous
variable is assigned an equation (possible through combining several equation fragments),
with which its value is computed.

Endogenous variables can be further classified as auziliary or state. State variables are
influenced by differential equations, whereas auxiliary variables are influenced by algebraic
equations. A variable cannot be influenced by both algebraic and differential equations.

These requirements can be formally expressed with the following predicates:

auxiliary(v) = true <= (Vq € Q) (lhs(q) =v = type(q) = algebraic) (4.41a)

state(v) = true <= (Vq € Q) (lhs(q) =v = type(q) = differential) (4.41b)

State variables have an initial value, which is the value of the variable in the first time
point. The value of each variable is a function of time, represented by the value mapping. The
value of the variable is not included in the specification of variable instance in the process-
based formalism. The value is assigned depending on the role of the variable. Exogenous
variables acquire their values from measurements specified in an external data set. On the
other hand, the values of endogenous variables are to be computed using the corresponding
equations. In the case of auxiliary variables, the values are computed simply by employing
the equations directly. In the case of state variables, differential equations are being envoked
through numerical simulation.

Constants

A constant is characterized with its value, range, and unit.

template : C — TC (4.42a)
value : C — R (4.42b)
range : C — [a,b], a,b€R (4.42c)
unit : C — A", where A is an alphabet set (4.42d)
The range and unit of each constant are the same as in its template.
range(C) = range(template(C)) (4.43a)
unit(C) = unit(template(C)) (4.43b)

The value of the constant is its only property which is specified when instantiating
the constant. Therefore, it makes sense to make the assignment of a value to a constant
straightforward, by simply assigning the value to the constant name itself with the syntax:
constName = real Number.
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4.3.5 Processes

A process instance relates entity instances. A process is characterized with its arguments,
constants, equations and nested processes.
A process instance is defined with the following syntax:

process processName ( Arguments ) : TemplateProcess {
consts:
instance_constant_def (,instance_constant_def)x;
processes:
nested_processes_list;

Mathematically, for each process instance the following mappings are defined:

template : P — TP (4.44a)
arguments : P — Z(E)* (4.44b)
constants : P — C (4.44c)
equations : P — Z(Q)" (4.444)
processes : P — P (P)* (4.44e)

Each argument of a process instance is a set of entity instances. In the process-based
formalism, sets are denoted with square brackets as delimiters. For example, [phosphorus,
nitrogen] denotes a two-element set consisting of the entities phosphorus and nitrogen. For
simplicity, single-element sets can be written without the square brackets.

The number of arguments of a process must correspond to the number of arguments of
its process template. Furthermore, the type and number of the entities in each argument
must correspond to the type and cardinality of the argument of the process template.

The following properties must hold for the arguments of any process P:

|arguments(P)| = |arguments" (template(P))| (4.45a)
. |arguments(P)|) ( )
VieN VE € arguments(P);
( : 8 (P) (4.45b)
descendant” (template(E),arguments” (template(P));)
<Vi € N'largumems(P)') |arguments(P);| € arguments® (template(P)); (4.45¢)

Constants in processes are specified in the same way as constants in entities. Addition-
ally, there is a one-to-one mapping between the constant instances in the process instance
and the constant templates in the process template.

(VC € constants(P)) <EI! TC € constants(template(P)))template(C) =TC (4.46a)

(VTC € constants(template(P))) (EI!C € c0nstants(P)>template(C) =TC (4.46b)

Equations

Each equation instance is defined with its function, type, and left-hand side and input
mappings.

type : Q — {algebraic, differential}, whether the equation is algebraic or differential

(4.47a)

lhs : @ — V), the variable that is the left-hand side of the equation (4.47b)
function : @ — (R" — R), the functional form of the right-hand side of the equation

(4.47¢)

inputs : @ — (N] = (Y UC(C)), (4.474d)
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which variables and constants are used in the equation and the exact positions on which
they are used
iterated : @ — € U {@}, the entity for which this equation is iterated, if any (4.47e)

The type and functional form of each equation are the same as for its template equation.

type(Q) = type(template(Q)) (4.48a)
function(Q) = function(template(Q)) (4.48b)

Equation instances have special treatment in the process-based formalism because they
are the only concepts that are not explicitly defined. There is no way to define an equa-
tion instance in a model. Equation instances are implicitly instantiated whenever a process
instance is instantiated. The equation instance in uniquely determined with the equation
template defined in the process template and the arguments of the process. Equation in-
stances, however, like all other concepts in the formalism can be mathematically specified
with mappings and set of propositions which must hold.

Each equation template corresponds to a set of equation instances. Each equation in-
stance in the set must have the corresponding equation template. The following properties
hold for the equations of any process P:

lequations(P)| = |equations(template(P))| (4.492a)
(Vi eN ‘fqumio"s(m‘) (VQ € equations(P),-) template(Q) = equations(template(P));)4.49b)

When we talked about process templates, we defined the mappings arg™ and arg™ which
for a given process template provide all variable and constant templates, respectively, that
belong to the arguments of that process template. Here, we define a function arg that maps
variable and constant templates from the arguments of a process template to variable and
constant instances from the arguments of a process instance.

arg : arg" (template(P)) U arg™ (template(P)) U constants(template(P)) — VYV UC (4.50a)
(V(i, TV) € argTV(template(P)))

arg((i,TV)) = {V € V’(ElE € arguments(P);)V € variables(E) N\ template(V) = TV}
(4.50b)
(V(i, TC) € arg™ (template(P)))

arg((i,TC)) = {C € C‘(EIE € arguments(P);)C € constants(E) N\ template(C) = TC}
(4.50¢)
(VTC € constants(template(P)))W(TC) = {C € constants(P) template(C) = TC } (4.50d)

All equation templates that are not iterated (irerated(TQ) = 0) use only arguments with
cardinality one. That means that the subsets of arg™ (TP) and arg™(TP) that are used in
the equations map with arg to single element sets. The input mapping for these equations
is then defined as a composition of the input mapping of its equation template and the arg
mapping.

iterated(template(Q)) = 0 = inputs(Q)(i) € arg(inputs(template(Q))(i)) (4.51)

The iterated argument of an equation that is iterated can contain arbitrary number of
entities as long as this satisfies the constraint of the cardinality of the argument. For each
of this entities there is a one equation that has that entity as its iterated mapping.

. |equations(template(P))| . . )
(VP € ’P) (Vl eN; )(TQ = equations(template(P);)) —> (4.52)

(VE € arguments(P)l-,em,or(TQ)) (EIQ € equations(P)i>iterated(Q) =E
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All template inputs (variable and constants) in an equation that come from the argument
which is used as an iterator must come from the variable and constants of the entity which
is the iterated entity.

(Vi € N’f) (inputs(template(Q))(i) = (j,TV) € arg"(TP) A iterator(template(Q)) :(41>533)

= inputs(Q)(i) € variables(iterated(P))

<Vi € N’f) (inputs(template(Q))(i) = (j,TC) € arg™(TP) A iterator(template(Q)) :(4;>53b)

= inputs(Q)(i) € constants(iterated(P))

Nested Processes

Nested processes are specified with the processes mapping. Similarly to equations, one
nested process in the process template corresponds to a set of nested processes in the process
instance. In the process-based formalism, nested processes are specified as a single list and
not as a list of sets, because the system can infer the the placement of nested processes by
the order in which they are specified.

The number of nested processes in the process template must correspond to the number
of nested process sets in the process instance:

|processes(p)| = |processes(template(p))| (4.54)

The type of the process specified as nested process in a process instance must be com-
patible with the template of the nested process specified in the process template:

<Vi eN ‘lpmcesses(m ‘) (VI3 € processes(P)i> ancestor” (template(P), processes(template(P));)

(4.55)

The reason why nested processes are grouped into sets is to accommodate for the use
of iterators. The nested process which are not iterated contain a single process instance,
whereas the nested processes which are iterated contain as many process instances as there
are entity instances in the argument for which they are iterated:

(Vi € N‘lpmcesm(m‘)processesl(template(p))(i) =0 = |processes(p)i| =1 (4.56a)

<Vi € N‘{”“e””(p)‘) (4.56Db)

processes' (template(p))(i) = j > 0 = |processes(p);| = |arguments(P);|

Each nested process specified in a process template specifies the mapping between the
arguments of the containing process and the nested process. Once a process is instantiated
with specific arguments, these constraints translate to exact requirements of the entity
instances that must appear as arguments to processes that are specified as nested processes
of other processes.

The following statements formally state these requirements for both non-iterated and
iterated nested processes:
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(Vi eN ‘lpmcmes(m‘) processes' (template(P))(i) = 0 =
() ) (4.57a)

(Ellﬁ € processes(P),-) (V JjE Nlargumem
arguments(P)j = arguments(P)pmcessesA(template(P))(i,j)

(Vi eN ‘lpmesses(P)‘) processes' (template(P))(i) =k >0 —

(Vj c Nlarg"mmm(ﬁ)‘)processes"(i,j) Lk — (4.57b)
(3!13 € processes(P),-)arguments(ls) j = arguments(P),ocessest (i, )

(Vi eN ‘f)rocesses(mg processes' (template(P)) (i) =k > 0 =
(vj' . Nylargumems@)\) processes (i, j) = k —> (4.57c)

(VE € arguments(P)rocesses’ (i, j)> (313 € processes(P),-) arguments(P); = {E}

Nested processes are typically interpreted as components of the process in which they
are nested. From this interpretation of nested processes arises a need to disallow cyclic
nesting of processes. This requirement is satisfied by default by all models, because it is a
consequence of the requirements of the library.

As enforced by Property (4.28) in Section 4.2.4, the process templates can not be nested
cyclically. Since process instances obey the specifications in the process template, this
requirement directly transfers to process instances.
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5 From Qualitative to Quantitative Models

In the previous chapter, we introduced process-based models especially their qualitative
aspect comprising compartments, entities and processes. At a lower, quantitative level,
these model elements include variables, constants and equations. Here, we focus on the task
of bringing together all quantitative properties from different model elements. Put together,
they represent the quantitative representation of the process-based model.

The content of a process-based model is taxonomically structured with compartments.
Entities and processes are distributed among compartments for better organization and
more realistic representation. To bring the quantitative model properties together, we firs
define mappings between models and their components in terms of compartments, entities,
and processes. To this end, we define a mapping compartments® : M — Z7(K) which to
each model adjoins the set of all compartments that lie beneath it in the compartmental
taxonomy. We define compartments® as the transitive closure of the compartments mapping.

compartments® = compartments* (5.1)

Figure 5.1(a) shows a model containment hierarchy including the model (M), compart-
ments (K;), entities (E;) and processes (Pg). The set of all nested compartments of a given
model is highlighted in Figure 5.1(b).

Each model can contain entities and processes that are contained at the model level and
entities and processes which are embedded within nested compartments. The entities and
processes contained at the model level are represented with the entities(-) and processes(-)
mappings. We define the mappings entities®(-) and processes™(-) to collect all entities and
processes which are contained in a model.

entities" : M — P(E) (5.2a)
processes® : M — P (P) (5.2b)

The entities®(-) and processes"(-) functions are defined using the compartments®(-) map-
ping:

entities® (M) = {E e€ ‘ E € entities(M) \V (E € entities(K) NK € compartmentsR(MX)')}?)a)
processes" (M) = {P eP ‘ P € processes(M) \/ (P

(5.3b)
€ processes(K) NK € compartmentsR(M))}

The sets of all nested entities and processes of a given model are highlighted in Fig-
ure 5.1(c) and Figure 5.1(d) respectively. Furthermore, we define functions that map a
model to the sets of all variables, constants, and equations contained in the model.

variables® : M — P(V) (5.4a)
constants" : M — Z(C) (5.4b)
equations” : M — P (Q) (5.4¢)
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compartments®(M)

entities®(M) processes"(M)

(c) (d)

Figure 5.1: A model containment hierarchy highlighting nested (b) compartments, (c¢) entities and
(d) processes.

The variables® (-), constants®(-) and equations®(-) functions are defined using the entities"(-)
and processes™(-) mappings:

M) = {V Y ‘ V € variables(E) NE € entitiesR(M)} (5.5a)

variables®
R

(
constants® (M) = {C ecC ‘ C € constants(S) A\ S € (entities" (M) U processes" (M)) }(5.5b)

equations® (M) = {Q €9 ) Q € equations(P) AP € processesR(M)} (5.5¢)

The sets of all variables, constants, and equations of an example model are highlighted
in Figure 5.2(b), Figure 5.2(c), and Figure 5.2(d) respectively.

In section 4.3, we introduced a categorization of model variables based on the role of
the variable, which we illustrated in Figure 4.1. With this categorization, we partitioned
variables into exogenous and endogenous, and then further partitioned endogenous variables
into auxiliary and state variables. Different variable types serve a different purpose in the
model. We define the following mappings that gather all variables that appear in a model

by type:

exogenous(M) = {V € variables™ (M) | role(V) = exogenous} (5.6a)
endogenous(M) = {V € variables" (M) | role(V) = endogenous} (5.6Db)
auxiliary(M) = {V € variables™ (M) | auxiliary(V) = true} (5.6¢)
state(M) = {V € variables" (M) | state(V) = true} (5.6d)

Process instances within a model can appear either as top-level processes or nested
processes. A top-level process is not included as a nested process in any other process in
the model, whereas nested process only appear as subcomponents of other more complex
processes. We express the set of all top-level processes processes™" of a model M formally:

processes °" (M) = {P € processes® (M) ‘—| (3P € processes®(M)) P € processes(ﬁ)} (5.7)
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Figure 5.2: A hypothetical model containment hierarchy highlighting the variables, constants, and
equations in the model.

5.1 Model Structure, Parameters, and Completeness

Here, we define two important constituents of a process-based model, model structure and
model parameters. The later are numerical parameters that comprise initial values of the
model state variables and values of the model constants. In other words, the parameters of
a model are defined with the restriction of the function initial to the set state(M) (denoted
as initial| g, (y)) and the restriction of the function value to the set constants(M) (denoted as
value| .,,sansvry)- Given these two restrictions, we define the model parameters as a union
of the state variables and constants of the model:

parameters(M) = state(M) U constants(M), M € M (5.8)

All the other information provided in the definition of a process-based model is referred
to as model structure.

The example process-based models from the previous chapter have completely specified
both the structure and parameters. In this section, we will consider incompletely specified
process-based models, where parts of the parameters and structure specification are missing.

5.2 Incomplete Model Parameters

The model parameters are completely specified (or complete) if the functions that specify
model parameters (initial and values) are defined on the whole sets of parameters (state(M)
and constants(M)). If some of the model parameters are left undefined, then the functions
that specify model parameters are missing some mappings. In continuation, we define
subsets of state(M) and constants(M) that correspond to the known and to the unknown
initial and constant parameters.

The set state®(M) is the set of state variables whose initial values are specified. The
set state® is the set of state variables for which the initial values are unspecified. Together,
state® (M) and state® form a partition of state(M), i.e., state(M) = state® (M) U state® (M) and
state® (M) N state® (M) = @.



56 From Qualitative to Quantitative Models

Example 5.1: A simplified model of a lake ecosystem defined by using the hierarchical version of the
aquatic ecosystem library.

model completeLakeModel : AquaticHierarchicalLibrarys;
entity phyto : PrimaryProducer {
vars:
conc{role: endogenous; initial: 10},
nutrientLim;
consts:
maxGrowthRate = 0.5,

}

entity phosphorus : Nutrient {

vars:
conc{role: endogenous; initial: 3};
consts:
halfSaturation = 0.02,
alpha = 0.1;

}

entity nitrogen : Nutrient {

vars:
conc;

consts:
halfSaturation = 0.2,
alpha = 0.7,

}

process growth(phyto, [phosphorus,nitrogen|) : Growth {
processes:
phosphorusLim, nitrogenLim;
}

process phosphorusLim(phyto, phosphorus) : MonodLimitation{}
process nitrogenLim(phyto, nitrogen) : Monod2Limitation{}

reR V € state® (M)

5.9
undefined V € state® (M) (5.9)

initial(V) = {
The set constants® (M) is the set of constants with specified values. The set constants®
is the set of constants with unspecified values. Together, constants®(M) and constants®

form a partition of constants(M), i.e., constants(M) = constants® (M) U constants®(M) and
constants® (M) N constants® (M) = &.

reR C € constants® (M)

5.10
undefined C € constants” (M) (5.10)

value(C) = {

The sets of all model parameters with specified values parameters® and all unspecified
model parameters parameters® are defined as:

parameters® (M) = state® (M) U constants® (M) (5.11a)
parameters® (M) = state® (M) U constants® (M) (5.11b)

Within the process-based formalism, we declare that the value of a numerical parameter
in a given model is unspecified, by assigning it the special value null instead of the usual
numerical value. The phyto entity from Example 5.1, contains a state variable conc with
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growth
td(phyto.conc) =
phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim
td(nitrogen.conc) = e K A
-nitrogen.alpha * phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim nitrogen
td(phosphorus.conc) = -
-phosphorus.alpha * phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim
phyto
cone nitrogenLim
nutrientLim L /frf‘hyt?)}\ﬁtﬁén’tﬁrﬁéfﬁf”"”’T"’""”"’"”"7 L
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L/, phosphorus.conc / (phosphorus.conc + phosphorus.halfSaturation) /

Figure 5.3: A complete model.

an initial value of 10 and a constant mazGrowthRate with a value of 0.5. The complete
model from Example 5.1 is illustrated in Figure 5.3. If the values of these two numerical
parameters were not specified, the definition of phyto would become:

entity phyto : PrimaryProducer {
vars:
conc {role: endogenous; initial: null},
nutrientLim;
consts:
maxGrowthRate = null;

Instead of a value function specifying their values, parameters with unspecified values
have a function fitting range defining the bounds on the expected parameter value. The
fitting ranges of the unspecified parameter values are defined using the range™ function.

range" (V) w la,b], a,b €R, V € state®(M) (5.12a)
range" (C) + [a,b], a,b € R, C € constants® (M) (5.12b)

In the process-based formalism, we specify the fitting ranges using the fit_range property.
When specifying the fitting range for initial values of state variables, we simply add the
additional property fit_range which has a value of type interval to the state variable. When
specifying the fitting range for the value of a model constant, we extend the definition of the
constant with a block specification enclosed in curly brackets. Within the block specification
(which is the usual way of specifying properties of variables for example), we include the
fit_range property specified as an interval.

The suitable fitting range for the conc state variable from Example 5.1 is, for example,
the interval [0.60,0.61], whereas the fitting range for the marGrowthRate is [0.05,3]. The
definition of phyto with this information included is as follows:

entity phyto : PrimaryProducer {
vars:
conc {role: endogenous; initial: null; fit_range:<0.60, 0.61>},
nutrientLim;
consts:
maxGrowthRate {fit_range:<0.05,3>} = null;
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The fitting ranges are specified by the modeling expert and usually come from modeling
knowledge in the specific domain. The fitting ranges for the examples used throughout the
dissertation are taken from Atanasova et al. (2006c¢).

Note that ranges for the values of variables and constants can be specified in libraries.
If a model is defined using a library, we can make use of these ranges. The fitting range can
then be defined to match the range specified in the library.

5.3 Incomplete Model Structure

Similarly to the completeness of the model parameters, the model structure is complete
when all of the corresponding mappings are well and completely defined. If some of the
mappings are incomplete, we refer to the corresponding model structure as incomplete. We
distinguish here two types of incomplete model structure: incomplete process arguments
and incomplete process types.

5.3.1 Incomplete Process Arguments

The arguments of a process in a process-based model are specified with the mapping
arguments. This mapping associates each process instance to a tuple of sets of entity in-
stances: P+~ (Ey,Ea,...,E,), where E; C £. Note that we can also consider them as a
function that maps integers to sets of entities i — E;, where the integer i is the index of the
entity set E; in the arguments tuple:

1 2 - =n
arguments(P) = <E1 E .. En>

Following this definition, we can now represent process arguments as:
arguments : P — (N§ — 2(&)) (5.13)

We uniquely identify an argument position with the pair (P,i), where P is the process
instance to which the argument belongs and i is the position of the argument within the
argument list of the process P. We then form the set of all argument positions in a given
model M (denoted positions(M)) as:

positions(M) = {(P, i) ‘P € processes" (M) Ni € N'lmgumems(ml} (5.14)

Using this definition of positions(M), we can define all the arguments in a given model
as a mapping arguments(M) : positions(M) — & (E) defined with (P,i) — arguments(P)(i).
We can then summarize arguments(M) as:

arguments(M) = {(P7 i) — E‘P € processes" (M) Ni € N'largumem(P)‘ NE = arguments(P)(i)}
(5.15)

In an incomplete process-based model, we allow some of the bindings of the argument
mappings to be left unspecified. With the missing argument mapping, we indicate that we
are not able to specify which entities participate in the corresponding process.

We define subsets of the index set positions(M) which correspond to the specified and
unspecified argument bindings.

The set positions®(M) is the set of argument position for which the argument binding is
specified. The set positions® is the set of argument positions for which the argument binding
is unspecified. Together, positions® (M) and positions®(M) form a partition of positions(M),
i.e., positions(M) = positions® (M) U positions® (M) and positions® (M) Npositions” (M) = &.
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ECE& pos € positions® (M)

arguments(pos) = { (5.16)

undefined pos € positions® (M)

Note however, that in many cases, we are able to provide partial information about a
missing binding. The process-based formalism allows us to specify a set of entity instances
that we find suitable to be used for the particular argument. This set of entities forms the
upper bound of the argument. For arguments which have cardinality one, the upper bound is
the only reasonable constraint. However, for arguments which have cardinality larger than
one, it also makes sense to specify a lower bound. The lower bound defines the set of entities
that are mandatory for that argument. This is useful in the case where we are certain that
particular entities are involved in the process, but we are not certain whether they are the
only entities that play a role in the process.

We define two functions: lower bound bound" and upper bound bound”, which for each
process argument position that has an unspecified argument, provide the constraints on the
allowed values in the form of lower and upper bound.

bound" : positions(M) — P (E) (5.17a)
bound" : positions(M) — P (E) (5.17Db)

Within the process-based formalism, we declare that a process argument has an unspeci-
fied binding by providing the lower and upper bounds instead of the value of the arguments.
For example, the growth process from Example 5.1 was defined as a complete process:

process growth(phyto, [phosphorus, nitrogen|) : Growth {
// body omitted . . .
}

If the second argument, which denotes the nutrients were unspecified, but phosphorus and
nitrogen were candidates for participating in the growth process, then its definition would
be:

process growth(phyto, [[], [phosphorus, nitrogen]]) : Growth {
// body omitted . . .
}

Unspecified argument bindings are denoted within a pair of square brackets, and consist
of two parts: the first part is the lower bound surrounded by square brackets and the second
part is the upper bound surrounded by square brackets. In this example, the lower bound is
an empty set (denoted by []), whereas the upper bound is the two-element set of phoshprus
and nitrogen (denoted by [phosphorus, nitrogen]).

We can leave an argument completely unspecified by giving it the value [[],[all]]. If this
value were assigned to the nutrients argument in the previous example, then this argument
would become completely unspecified. What is known is that the argument in that position
has to be of type Nutrient and knowing the instance entities of type Nutrient in the model,
defines the set of possible choices for that argument. In the model in Example 5.1, we
have two instance entities of type Nutrient: nitrogen and phosphorus, therefore the possible
choices for a suitable argument would be made from [nitrogen, phosphorus].

5.3.2 Incomplete Process Types

Recall from the previous chapter, that the entity and process templates form inheritance
taxonomies. Following them the templates can be classified at different level of abstractions.
The templates in the inner taxonomy nodes are abstract templates representing general
concepts for grouping and organizing knowledge. The templates at the leaf taxonomy nodes
are concrete templates and serve to create instances in a process-based model.
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| EcosystemEntity I
Nutrient I | Population I
|PrimaryProducer| | Zooplankton I

Figure 5.4: Taxonomy of entity templates depicting abstract entity templates (yellow) and concrete
entity templates (green).

All entity instances that appear in a process-based model are created from concrete
entity templates. Even though abstract entity templates are not directly used to create
instances, they have an important role. By using abstract entity templates as types for
process arguments, we creating more general processes that can handle different concrete
types of arguments.

Figure 5.4 presents an example of an entity taxonomy. This is an extension to the aquatic
ecosystems library presented in Example 3.9 and depicted in Figure 3.3(a), which includes
the additional entity template Zooplankton. Phytoplankton and Zooplankton are both types
of Population.

We define two predicates abstract and concrete, which answer the question whether a
given entity template E € £ is abstract or concrete.

abstract(E) = true < (ElE € 5) super”(E,E) (5.18a)

concrete(E) = true <= - (EIE € S> super®(E,E) (5.18b)

For each abstract entity template, we define its set of concretizations. A concretization
of an abstract entity template is a concrete entity template that lies beneath the abstract
entity template in the taxonomy of entity templates. Formally:

concretizations(E) = {E €& ‘ancestorE(E ,E) A concrete(E )} (5.19)

The EcosystemEntity from Figure 5.4, for example, has a set of concretizations consisting
of three elements: Nutrient, PrimaryProducer and Zooplankton.

Process templates are also organized in a taxonomy. The taxonomy of process templates
is an alternatives taxonomy. The inner nodes in the taxonomy represent conceptual pro-
cesses, where each conceptual process is a generalization for a class of processes. An example
of a conceptual process is the Temperature Growth Influence process given in Figure 5.5.
This process is a conceptualization of the influence that temperature has on the growth of
phytoplankton. It specifies the arguments that are involved in such a process, but it does not
specify any equations. Equations are the mathematical representation of the process, and
temperature can influence the growth of phytoplankton in many different ways, which will
be reflected in different equations. The different mathematical specifications of the influence
that a process has is specified through specific process templates.

Specific process templates are the leaf nodes in the taxonomy of process templates.
Temperature influence can be represented as No temperature limitation which is the trivial
case and Temperature limitation which indicates that the influence that temperature exerts
on the growth of phytoplankton is some form of limitation. The temperature limitation is
itself a conceptual process because the actual mathematical form of the limitation can be
specified with different limitation functions. This is the purpose of specific processes.

A specific process performs the role that is conceptualized by its parent process tem-
plate by providing one mathematical form. Each mathematical form is one alternative
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| TempGrowthinfluence I

| NoTempGrowthLim I | TempGrowthLim I

| Linear1TempGrowthLim I | Linear2TempGrowthLim I |ExponentiaITempGrowthLimI

Figure 5.5: Taxonomy of process templates depicting conceptual process templates (yellow) and
specific process templates (green).

for the role of the conceptual process. In Figure 5.5, the conceptual process Temperature
Growth Limitation has three mathematical alternatives. The first alternative denoted as
Linear 1 is given with the formula tempGrowthLim = temperature/refTemp, with the ref-
erence temperature refTemp as parameter. The second alternative is denoted as Linear 2
and is also a linear dependency given with the formula tempGrowthLim = (temperature —
minTemp)/(refTemp — minTemp), where the distance to the known minimal temperature
minTemp is the driving force. The third alternative is denoted as Fxponential and given
with the formula rempGrowthLim = pow(theta,temperature — re fTemp).

We define two predicates conceptual and specific, which answer the question whether a
given process template P € P is conceptual or specific.

conceptual(P) = true < (Elﬁ € 'P) super” (P,P) (5.20a)

specific(P) = true <= — (Ell8 € ’P) super” (P,P) (5.20b)

For each conceptual process template, we define its set of specifications. A specification of
a conceptual process template is a specific process template that lies beneath the conceptual
process template in the taxonomy of process templates. Formally:

specifications(P) = {ﬁ € ’P’ancestorP (P.P) A speciﬁc(ﬁ)} (5.21)

The TempGrowthincluence process from Figure 5.5, for example, has a set of speci-
fications consisting of four elements: NoTempGrowthLim, LinearlTempGrowthLim, Lin-
ear2TempGrowthLim, and FExponential TempGrowthLim.

All complete models that were discussed so far contained only process instances that
had as templates, specific process templates. In these models, each process instance is
committed to a particular mathematical form. Process instances can have as templates
conceptual process templates. In that case, the process instance is incomplete in the sense
that it is lacking the necessary equations to be a fully quantified process. We denote this
type of incompleteness as incomplete process type.

Unlike incomplete parameter values and incomplete process arguments, for which the
incompleteness is expressed as a missing definition, for which we substitute a constraint des-
ignating the allowed values, here, the template function is defined. The definition, however,
is not considered a complete definition. In order for the template function to be considered
complete, it is required that it maps to specific process template.

In Chapter 3, we defined the function processes™ : M — Z2(P) which yields the set of all
processes contained in a model. Furthermore, we partition the set of all processes in a model

into processes with specific templates—processes® and conceptual templates—processes®:

processes® (M) = {P € processes" (M )‘speciﬁc(P) = true} (5.22a)

processes® (M) = {P € processes" (M )‘conceptual(P) = tme} (5.22b)
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The set processes®(M) is the set of processes with incomplete types. For each process P
with an incomplete type, the set of specifications of that process specifications(P) is the set
of alternative forms that the process can acquire.

In the process-based formalism, a process with incomplete process type is simply defined
by providing a process template that is a conceptual process template. For example, the
definition of the limitation of phytoplankton growth by phosphorus is defined in Example
5.1 is given as:

process phosphorusLim(phyto, phosphorus) : MonodLimitation{}

If the phosphorusLim process is defined as a conceptual process, then the definition
would be as follows:

process phosphorusLim(phyto, phosphorus) : NutrientLimitation{}

5.3.3 Structurally Complete and Incomplete processes

A process with a completely specified type and arguments is a structurally complete pro-
cess. In contrast, a process with incomplete structure can have incomplete type or argu-
ments specification. Hence, a structurally incomplete process contains one or two types of
incompleteness. Note however, that both structurally complete and incomplete processes
may contain incompletely specified parameters, so a structurally complete process is not
necessarily a completely defined process.

We define a completion relation between a structurally complete process P and a struc-
turally incomplete process P: completion(P, [D\) which we read P is a completion of P. Let P
be an arbitrary structurally incomplete process. In order for a structurally complete process
P to be a completion of ﬁ, it must have suitable process type and suitable arguments. The
process type of P is suitable if it is a completion of the process type of P. If the process
type of Pis specific, then P must have the same process type. In other words, the following
statement must hold:

-~

template(P) € completion(P) (5.23)

The notion of suitable arguments is slightly more complex. First, all specified arguments
of P have to appear in P also. In addition, all unspecified arguments of P must be specified
in P and must lie between the lower and upper bound of that argument. In other words,
the following statements regarding specified and unspecified arguments must hold:

<k € N'larg“mems(m) (P,k) € positions® (M) = arguments,(P) = arguments, (P)(5.24a)

arguments(P ~ .. ~
(k € N|1 guments( )|> (P,k) € positions® (M) = bound"(P,k) (5.24b)

C arguments; (P) C bound" (P, k)

5.4 Incomplete Model Specification

In the previous sections we described three kinds of incompleteness of process-based mod-
els. A model which contains incompleteness of any kind is denoted as incomplete model.
An incomplete model consist of entity and process instances, some of which contain incom-
pleteness of one or more kinds.

The entities contained in an incomplete model are required to be structurally complete;
they can only be incomplete in terms of model parameters. In other words, the number and
type of entities in the incomplete model is given and fixed. Moreover, the type of each entity
is always a concrete entity template. Finally, incomplete models can either have unspecified
initial values of state variables or unspecified values of constants.
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The processes in the incomplete model, on the other hand, can contain all three kinds of
incompleteness. They can have incomplete parameter values, incomplete process argument
bindings or incomplete (conceptual) process types. In the remainder of this section, we are
going to introduce each type of incompleteness and illustrate it on an example.

5.4.1 Models with Complete Structure and Incomplete Parameters

The simplest type of incomplete model is a model with a complete model structure and
incomplete numerical parameters. The incomplete model in Example 5.2 is based on the
complete model from Example 5.1, with the initial values of phyto.conc and phosphorus.conc
and the values of phosphorus.halfSaturation and nitrogen.halfSaturation omitted.

Example 5.2: A model with a complete structure and incomplete parameters.

incomplete model lakeModellncompleteParameters : AquaticHierarchicalLibrary;
entity phyto : PrimaryProducer {
vars:
conc{role: endogenous; initial: null},
nutrientLim;
consts:
maxGrowthRate = 0.5,

}

entity phosphorus : Nutrient {

vars:
conc{role: endogenous; initial: null};
consts:
halfSaturation = null,
alpha = 0.1;

}

entity nitrogen : Nutrient {

vars:
conc;

consts:
halfSaturation = null,
alpha = 0.7

}

process growth(phyto, [phosphorus,nitrogen|) : Growth {
processes:
phosphorusLim, nitrogenLim;
}
process phosphorusLim(phyto, phosphorus) : MonodLimitation{}
process nitrogenLim(phyto, nitrogen) : Monod2Limitation{}

This definition of an incomplete model starts with a declaration which includes the
keyword pair incomplete model followed by the name of the incomplete model (in this ex-
ample lakeModel WithoutParameters), a colon (:), and the name of the library which contains
the domain knowledge (AquaticHierarchicalLibrary), and ending with a semicolon (;).

Figure 5.6 shows a graphical representation of the same incomplete model. The specified
initial values of state variables and values of constants are inscribed within rounded squares
adjacent to the name of the attribute. The unspecified values are represented as empty red
rounded squares indicating that this information is missing in the model.
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growth
td(phyto.conc) =
phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim
td(nitrogen.conc) = _
-nitrogen.alpha * phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim nitrogen
td(phosphorus.conc) = -
-phosphorus.alpha * phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim halfSaturation
phyto
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Figure 5.6: A model with incomplete numerical parameters.

growth

td(phyto.conc) =
phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim

td(nitrogen.conc) = _
-nitrogen.alpha * phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim nitrogen

td(phosphorus.conc) = -
-phosphorus.alpha * phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim halfSaturation
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Figure 5.7: A model with incomplete nested process types.

5.4.2 Models with Conceptual Nested Processes

Each process which is nested in another process is defined in the usual way, in the same
compartment as the process which contains it (or at the model-level, if the containing process
is defined at the model-level). Example 5.3 builds upon the incomplete model in Example
5.2 and illustrates incomplete process types with the phosphorusLim process.

The incomplete model is illustrated in Figure 5.7. Similarly to Figure 5.6, it contains
unspecified parameters in the instance entities. In addition, the nitrogenLim process is only
specified at a conceptual level (we refer to such specifications as conceptual processes) and
therefore depicted as an empty red rectangle, drawing attention to its incomplete type.

In this scenario, the type and arguments of the surrounding process growth are specified,
but the type of the nested process phosphorusLim is incomplete. In this situation, we can
use a shorter way of declaring that the process type of the nested process is incomplete.
The definition of the process phosphorusLim can be omitted altogether from the incomplete
model, and the definition of the growth process then becomes:

process growth(phyto, [phosphorus,nitrogen|) : Growth {
processes:
NutrientLimitation, nitrogenLim;
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Example 5.3: A model with incomplete nested process.

incomplete model lakeModellncompleteParameters : AquaticHierarchicalLibrary:;
entity phyto : PrimaryProducer {
vars:
conc{role: endogenous; initial: null},
nutrientLim;
consts:
maxGrowthRate = 0.5,

}

entity phosphorus : Nutrient {

vars:
conc{role: endogenous; initial: null};
consts:
halfSaturation = null,
alpha = 0.1;

}

entity nitrogen : Nutrient {

vars:
cong;

consts:
halfSaturation = null,
alpha = 0.7;

}

process growth(phyto, [phosphorus,nitrogen|) : Growth {
processes:
phosphorusLim, nitrogenLim;
}
process phosphorusLim(phyto, phosphorus) : NutrientLimitation{}
process nitrogenLim(phyto, nitrogen) : Monod2Limitation{}
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Example 5.4: A model with incomplete process arguments.

incomplete model lakeModellncompleteArguments : AquaticHierarchicalLibrary;
entity phyto : PrimaryProducer {
vars:
conc{role: endogenous; initial: null},
nutrientLim;
consts:
maxGrowthRate = 0.5,
}

entity phosphorus : Nutrient {

vars:
conc{role: endogenous; initial: null};
consts:
halfSaturation = null,
alpha = 0.1;

}

entity nitrogen : Nutrient {

vars:
cong;

consts:
halfSaturation = null,
alpha = 0.7,

}

process growth(phyto, [[],[phosphorus,nitrogen||) : Growth {
processes:
NutrientLimitation;

Recall Property (4.57) from Section 4.3 according to which the arguments of a nested pro-
cess are uniquely determined by the arguments of the containing process and the argument
mapping. Therefore, these two alternative declarations of nested process incompleteness are
equivalent. The only difference between them is that in this case, the nested process has an
explicit name.

5.4.3 The Interplay of Incomplete Process Arguments and Nested Pro-
cesses

If a top-level process has an argument that is not bound, and this argument is used as an
iterator for a nested process, then it is not possible to know how many nested processes
should be present. Consequently, it is not possible to specify them as a list of nested
processes. The only reasonable specification in this case consists of providing the process
template for the nested processes.

This scenario is presented in Example 5.4. Here, the growth process has an unspecified
second argument and the definition of the Growth template in the AquaticHierarchicalLibrary
mandates one nested process of type NutrientLimitation for each entity instance in the
second argument:

template process Growth(pp : PrimaryProducer, ns : Nutrient<1, inf>) {
processes:
NutrientLimitation(pp, <n:ns>);
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growth

td(phyto.conc) =
phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim

td(nutrient.conc) = K

-nutrient.alpha * phyto.maxGrowthRate * phyto.conc * phyto.nutrientLim nitrogen
Cratsowaron ()
phyto

NutrientLimitation

nutrientLim

phosphorus

Figure 5.8: A model with incomplete process arguments.

equations:
td(pp.conc) = pp.maxGrowthRate * pp.nutrientLim * pp.conc,
td(<n:ns>.conc) = n.alpha * pp.maxGrowthRate % pp.nutrientLim % pp.conc;

We visualize this incomplete model as presented in Figure 5.8. The inclusion of phyto in
the growth process is specified as indicated by the lines which connect phyto to the different
parts of the growth process. Nitrogen and phosphorus are specified only as candidates for
inclusion in the growth process and their participation is not certain. Therefore, they are
not visually connected to the growth process and its constituents. The nested processes of
the growth process are specified only by their type NutrientLimitation and their number
and specific form is not determined.

5.4.4 Models with Incomplete Top-Level Processes

In many modeling scenarios, some of the top-level processes are specified at a conceptual
level. The arguments of the process cannot be fully known, because each specific alternative
can provide additional arguments. The alternatives can also provide nested processes.

The Growth process template from the AquaticHierarchicalLibrary in Example 3.9 is
defined as:

template process Growth(pp : PrimaryProducer, ns : Nutrient<1, inf>) {
processes:
NutrientLimitation(pp, <n:ns>);
equations:
td(pp.conc) = pp.maxGrowthRate * pp.nutrientLim * pp.conc,
td(<n:ns>.conc) = n.alpha * pp.maxGrowthRate % pp.nutrientLim % pp.conc;

Every growth process created using the Growth template is nutrient limited. If we want
to allow for unlimited growth, then we can substitute the definition of Growth with the
following definitions:

template process Growth(pp : PrimaryProducer) {}
template process UnlimitedGrowth : Growth {
equations:
td(pp.conc) = pp.maxGrowthRate * pp.conc;
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Example 5.5: A model with incomplete top-level process.

incomplete model lakeModellncompleteTop : AquaticHierarchicalLibrary;
entity phyto : PrimaryProducer {
vars:
conc{role: endogenous; initial: null},
nutrientLim;
consts:
maxGrowthRate = 0.5,
}

entity phosphorus : Nutrient {

vars:
conc{role: endogenous; initial: null};
consts:
halfSaturation = null,
alpha = 0.1;

}

entity nitrogen : Nutrient {

vars:
cong;

consts:
halfSaturation = null,
alpha = 0.7,

}

process growth(phyto) : Growth {}

}

template process LimitedGrowth(ns : Nutrient<1, inf>) : Growth {
processes:
NutrientLimitation(pp, <n:ns>);
equations:
td(pp.conc) = pp.maxGrowthRate * pp.nutrientLim % pp.conc,
td(<n:ns>.conc) = n.alpha x pp.maxGrowthRate x pp.nutrientLim * pp.conc;

In this case, the Growth process is a conceptual process, with only one argument of type
PrimaryProducer. There are two specific processes which provide alternatives for the Growth
process. The first one is UnlimitedGrowth which defines unlimited exponential growth of
phytoplankton, uninfluenced by any other external force. This alternative is typically not
suitable for modeling growth, because in real-world ecosystems, the phytoplankton growth is
highly dependent on available nutrients and environmental conditions. In certain scenarios,
however, especially when experimenting with simulated data, it would be useful to consider
it as a possible alternative. The second alternative, LimitedGrowth, is defined in the same
way as the original Growth process from Example 3.9.

An incomplete model with a conceptual top-level process is presented in Example 5.5.
The growth process uses the newly defined conceptual Growth template. The structure of
this model is depicted in Figure 5.9. The growth process is depicted as a blank red square
suggesting that it is a conceptual process. Only the phyto entity is specified as an argument
and is therefore visually connected to the growth process.
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Figure 5.9: A model with incomplete top-level process types.

5.5 Inductive Process Modeling Task

Process-based modeling components form the basic substrate for inductive process modeling
(IPM) methods. The aim of inductive process modeling is to find a suitable process-based
model of an observed system, for which we have some background knowledge and some
measured data. The model to be found should be complete.

The starting point of formulating the task of inductive process modeling is a dynamical
system in which we are interested. We devise a library of domain knowledge which cap-
tures the available modeling knowledge about the class of such systems. We formalize our
hypothesis in an incomplete process-based model of the observed system. The aspects of
the system which are known are given and fixed in the incomplete model. The incomplete
model also contains the aspects of the system which are not known for certain. Each such
unknown aspect of the system is formalized as an incomplete specification, which also defines
the possible solutions to resolve the incompleteness.

The other principal aspect of the dynamical system, in addition to the domain knowledge,
are the available measurements of the system behavior. The measurements consist of two
parts: measurements of the external (exogenous) variables and measurements of the observed
state of the system. The exogenous variables are not modeled within the system, and we
need to provide measurements for them in order to be able to simulate the model. The
measurements of the observed state variables are used for evaluating the model.

In addition to background knowledge and measured data, we can provide an error func-
tion which is used to compare the simulated behavior of the model to the measured behavior
of the system.

The outcome of inductive process modeling is a list of candidate models that satisfy the
incomplete model and minimize the simulation error on the measured data. Each candidate
model is a complete process-based model, i.e., it has both a complete structure and constant
parameter values . All candidate models have different structure, yet they all satisfy the
incomplete model.

We pose the IPM task as follows:

Given:

e a library of domain knowledge,

e an incomplete model,

e measured data and

e an error function.
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Find:

e a ranked list of candidate models.

The IPM task can be decomposed into two subtasks: enumeration of structures and
parameter estimation. The first subtask refers to enumerating all the candidate models that
correspond to the given domain knowledge and incomplete model. Each model structure
enumerated within the first task, has to go through the second subtask of estimating the
proper values of the model parameters.

5.5.1 Model Structure Enumeration Subtask

The subtask of model structure enumeration revolves around the notion of model comple-
tion. We introduce a completion relation between two models, one incomplete model, which
is being completed and one structurally complete model, which is the one that completes.
In general terms, the structurally complete model is a completion of the incomplete model
if it preserves all complete aspects of the incomplete model and substitutes all structural
incomplete definitions with structurally complete ones without introducing unnecessary con-
structs.

Let M be an incomplete model and M be a structurally complete model. We say that M
is a completion of M if all of the following hold:

1. the compartmental structures of M and M are the same,
the entities of M and M are the same,

3. all structurally complete processes in M are also present in M,

4. each structurally incomplete process in M is completed in M in exactly one way,

5. M does not introduce any new top-level processes not present in M.

Statements 1., 2., and 3. imply that all complete aspects of the incomplete model
must be maintained. Statement 4. demands that all structural incompleteness is removed.
Finally, statement 5. prohibits adding superfluous processes to the complete model. The
requirements from statements 1-5 can be formally expressed with the following propositions:

o

compartments® (M) = compartments® (M) (5.25a)

entities® (M) = entities® (M) (5.25Db)

(VP € processes® (M )) P € complete” (M) => P € processes® (M) (5.25¢)

(Vﬁ € processesR(]\//i) P € incomplete” (M) — (3 (5.25d)
P € processes" (M)) completion(P, P)

processesTOP(ZVI)’ = |processes™" (M)| (5.25€)

With this notion of model completion, the model structure enumeration subtask then
becomes the task of generating completions of the incomplete model given using the com-
ponents from a library.

The model structure enumeration subtask is defined as:

Given:
e a library of domain knowledge and
e a structurally incomplete model.
Generate:
e a set of structurally complete candidate models.

5.5.2 Parameter Estimation Subtask

The second subtask in inductive process modeling is the estimation of the constant parame-
ters. Starting with a structurally complete model, the task is to find suitable values for the
constant parameters such that the discrepancy between the model’s simulated behavior and
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the system’s observed behavior is minimized. The model’s behavior is obtained by numerical
simulation of the model’s equations, whereas the system’s behavior is represented by the
measurements of the observed state variables. The discrepancy between the two behaviors
is measured by an error function.

The parameter estimation subtask is defined as:

Given:

e a structurally complete model with incomplete parameters,

e measured data and

e an error function.

Find:

e a complete model that minimizes the error function on the measured data.

Let M be a structurally complete model with unspecified parameters parameters®(M).
The state variables with unspecified initial values are denoted as state®(M) and the constants
with unspecified values are denoted as constants®(M). The resulting complete model M
includes specifications for all unspecified parameters which are in the allowed fitting range:

(WV € state®(M)) initial|y (V) € range” (V) (5.26a)
(VC € constants® (M)) value|y (C) € range" (C) (5.26b)

where initial|y and value|y respectively denote the definitions of the mappings initial and
value within the model M.
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6 ProBMoT

ProBMoT (Process-Based Modeling Tool) is a methodology for solving the IPM task. It
uses the process-based formalism for describing the domain knowledge organized in libraries.
Each library is contained in a file called the process-based library file with the extension .pbl.
It also uses the process-based formalism for expressing incomplete process-based models used
as input and complete process-based models used as output. Both complete and incomplete
models are contained in files called process-based model files with the extension .pbm.

The measurement data needed for simulation and evaluation of models is contained in a
comma-separated (CSV) file which records all measured variables at successive time steps:

time | Vi Vo, -+ 'V,
o Vor Vo2 ot Vom
141 Vii V2 ot Vim
153 Var V22 st Vap
ty YVl V2  Vmm

In addition, ProBMoT also utilizes an output specification. The output specification
comnsists of output variables and output constants. The output variables are functions of all
variables and constants within the model. The output constants are numerical parameters
which can be used within the definition of output variables. The output constants, just
like model constants, can be given a fixed value or can be fitted within some interval. The
output variables essentially define what is observed as an output of the system.

In most scenarios, we are able to directly measure the state variables and therefore the
output variables are simply a subset of the state variables, i.e., the observed state variables.
In some scenarios, we are unable to directly measure a state variable and instead can only
measure combinations of state variables like the total amount of several chemical compounds
instead of the individual amounts. In these scenarios, the output variables are functions of
the state variables which model the type of measurements we are able to perform.

The ProBMoT methodology proceeds in two stages, each solving one of the IPM sub-
tasks: model structure enumeration and parameter estimation. The pipeline of ProBMoT
is presented in Figure 6.1. The model structure enumeration stage takes as input an incom-
plete process-based model and a library of domain knowledge and enumerate all possible
completions of the given incomplete model. All candidate model structures enter the pa-
rameter estimation stage. This stage utilizes the measurement data and output specification
to produce complete process-based models with parameters that minimize the given error
function. At the end, all candidate models are ranked according to the assigned error value.

6.1 Model Structure Enumeration Stage

For a given incomplete process-based model, ProBMoT enumerates all its completions, hence
solving the model structure enumeration IPM subtask by generating all candidate model
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Figure 6.1: Overview of the ProBMoT pipeline

structures. The enumeration of model structures proceeds in three phases as depicted in
Figure 6.2.

A structurally incomplete model enters the first phase called top-level process reso-
lution. In this phase, ProBMoT substitutes all conceptual top-level processes with their
specifications. The result of this phase is one or more, still structurally incomplete, models
in which all top-level processes are specific process instances.

All models produced in the first phase enter the second phase called argument binding.
Models in this phase are processed one at a time and independently of one another. Each
unbound argument of a top-level process is assigned a set of entities which satisfies the lower
and upper bound constraints of that argument. Each model taken as input in this phase
results in one or more models. These models, in addition to having all only specific top-
level processes, have bound process arguments. They can be still structurally incomplete,
however, because they may contain nested processes which have a conceptual type.

The models produced in the second phase then enter the third phase called nested
process resolution. The only structural incompleteness which is left by this point is
conceptual nested processes. In this phase, each conceptual nested process is substituted
with a process that is its completion. The completion of a nested process can have its
own nested processes, which it turn can be conceptual. This phase is therefore recursive in
nature.

In each phase, one or more structurally incomplete models enter and one or more model
exit in which one type of incompleteness is removed. The last phase results with only
structurally complete models.

6.1.1 Process Refinement

Let P be a process instance with a conceptual type TP = template(P). Given a specific process
type TP' € specifications(TP), we can construct a process instance P’ such that template(P') =
TP' and all properties (arguments, constants, equations, and nested processes) of P are
carried on to P'. The properties of P’ must satisfy the following statements:

(Vi eN llarg”memsvr(rp)» arguments(P'); = arguments(P); (6.1a)
constants(P) C constants(P') (6.1b)

(Vi eN ‘lequmi"”sm))l) equations(P'); = equations(P); (6.1c)

(Vi € N'{mcessesrr(ﬁ)') processes(P'); = processes(P); (6.1d)

Besides those properties, TP’ may contain additional arguments, constants, equations,
and nested processes not present in TP. Therefore, P’ has to contain proper instances for
the additional arguments, constants and nested properties (equations in instance processes
are inferred from the equation templates and arguments).
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Figure 6.2: Enumeration of candidate model structures

We construct P’ to be an incomplete process, and all properties not present in P are left
unspecified. The newly introduced arguments which do not appear in P are unspecified:

(Vi € NIZ:?ZZEZ;f:g}Iz;)‘L_I) arguments(P'); = undefined (6.2)

and their lower and upper bound include all possibilities, equivalent to the specification [//,

[all]]:

(vi e s T ) bound“ (P'i) = 2 (6.3a)

. |arguments™ (TP')|
(Vl = N\argumentsT (TP)|+1

(6.3b)
bound" (P i) = {VE € entities™ (M )‘ancestorE (arguments™ (TP');, template(E ))}

The newly introduced constants which do not appear in P are also left with unspecified
values:
(VC € constants(P") \ constants(P)) value(C) = undefined (6.4)

and their fitting ranges are taken to be the same as their range of allowed values:
(VC € constants(P") \ constants(P)) range" (C) = range(template(C)) (6.5)

We denote P’ as refinement(P,TP') and say that P’ is a refinement of P to type TP'.
P has a conceptual type and may contain other types of incompleteness (arguments and
constant values). P’ resolves the conceptual type incompleteness, but may add other types
of incompleteness and contains all retains all other types of incompleteness that P has.
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6.1.2 Resolution of Top-Level Processes

The resolution of top-level processes is the first phase of the enumeration of model structures.
In this phase, the incomplete model that is part of the definition of the IPM task enters
ProBMoT. ProBMoT then makes internal copies of this model and in each copy substitutes
each conceptual top-level process with one of its refinements. All models created in this
phase are structurally different, as different process refinement combinations are used in
each model. The result of the first stage is the set of models created in this manner.

Algorithm 6.1 Resolution of top-level processes

1: procedure TLPRESOLUTION(M) returns MS
2: MS — o

3: PS < processes™" (M) N processes® (M) >PS={P,...,P,}
PS

Y A ‘H|speciﬁcations(template(ﬁ,-)) > Generate all specification combinations
i=1

5: for all PSPP¢ € PS¢ do

6: M' + Copy(M)

7: for i <+ 1,|PS| do

8: within M’ substitute P, with refinement(P;, PS"*°)

9: end for

10: MS < MSUM'

11: end for

12: return MS

13: end procedure

The procedure for generating models with resolved top-level processes is presented in
Algorithm 6.1. After determining the set of incomplete top-level processes PS, ProBMoT
generates all possible tuples of specifications to the incomplete top-level processes PS*"C.
For each tuple of specifications PS*E, it constructs a model M’ in which the processes from
PS are substituted with their refinements. The result of this phase is the set of all models
generated in this manner MS.

6.1.3 Argument Binding

The binding of process arguments is the second phase of the enumeration of model structures.
Each model produced in the first phase passes trough this phase. ProBMoT makes internal
copies of each model and in each copy binds each unbound argument to a set of entities.
The models created in this phase differ between themselves in the bindings of the argument,
because ProBMoT choses different combinations of argument bindings in each model. The
result of the second stage is a set of models in which all top-level processes are resolved and
all process arguments are bound to particular entity sets.

Algorithm 6.2 presents the recipe for generating models with bound arguments. The
ARGUMENTSETS procedure generates the allowed bindings for each unbound argument.
It defines the function AS which maps each unbound argument pos € positions®(M) to a
set of allowed argument combinations for that parameter comb. First, the mandatory and
optional sets of entities and the set of possible cardinalities of the argument cardinalities are
determined. Then, for each possible cardinality card € cardinalities, the set of combinations
of the optional entities choose card elements. All combinations of allowed cardinalities are
gathered in (comb) and assigned to AS(pos).

The ARGUMENTBINDING procedure works in a similar way to the TLPRESOLUTION
procedure from phase one. The possible argument bindings for each argument are stored in
the AS mapping and all combinations of arguments binding for the model M are constructed
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: procedure ARGUMENTSETS(M) returns AS(+)
AS«+— o
for all pos € positions®(M) do
mandatory < bound" (pos)
optional < bound" (pos) \ bound" (pos)
cardinalities +— arguments® (template(P)) N N(‘)OP tional
comb — &
for all card € cardinalities do
comb <— combU COMBINATIONS (optional, card)
end for

end for
return AS
end procedure
: procedure ARGUMENTBINDING(M) returns MS
MS <o
AS <~ ARGUMENTSETS(M)
binding®™M® + I1 AS(pos)
pos€Epositions® (M)
for all b°°M® € binding”™® do
M' + CoprY(M)
for all pos € positions® (M) do
within M’ bind argument pos to
end for
MS < MSUM'
end for
return MS
: end procedure

COMB
bpos

> Empty mapping
> For all undefined arguments
> pos = (P,i)

AS(pos) = comb > All combinations for the undefined argument
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in binding®"®. For each combination of argument bindings b°°™® a model M’ with that

assignment of arguments is created and added to the set of resulting models MS.

6.1.4 Resolution of Nested Processes

The third phase of the enumeration of model structures is the resolution of nested processes.
The models produced in the second phase carry on this phase. The nested process resolution
is conceptually similar to the first phase—resolution of top-level processes, where ProBMoT
substitutes all conceptual top-level processes with one of their refinements. Each process
refinement, however, may introduce new nested processes. The result will then be a model
which does not contain conceptual top-level processes, but may contain conceptual nested
processes. The procedure for resolving the newly added conceptual nested processes is then
the same, creating a recursive algorithm.

Algorithm 6.3 Resolution of nested processes

1: procedure NPRESOLUTION(M) returns MS
2: MS — o

3: PS < processes® (M) > PS={P,...,P}
PS

4: PSSPEC ‘H|speciﬁcations(template(ﬁi)) > Generate all specification combinations
i=1

5: for all PSP"¢ € PS¢ do

6: M’ < CopY(M)

7: for i+ 1,|PS| do

8: within M’ substitute P, with refinement(P;, PS"*)

9: end for

10: if processes®(M') = @ then

11: MS <~ MSUM'

12: else

13: MS <+ MSUNPRESOLUTION(M")

14: end if

15: end for

16: return MS
17: end procedure

The procedure for generating models with resolved nested processes is presented in Al-
gorithm 6.3. ProBMoT determines the conceptual nested processes PS and generates the
possible tuples of specifications to the conceptual nested processes PS**“. For each tuple of
specifications PSTEC, it constructs a model M’ in which the processes from PS are substituted
with their refinements. The refinements of conceptual processes reﬁnement(ﬁ-,PfPEc) may
introduce new conceptual nested processes, thus M’ may still be a structurally incomplete
model. If there are still conceptual processes within M’ they are recursively eliminated with

NPRESOLUTION(M'). The result of this phase is the a set of structurally complete models.

6.1.5 Finiteness of the Space of Candidate Model Structures

The process-based formalism is a powerful language that enables construction of struc-
turally complex models. A structurally incomplete model can contain different types of
incompleteness and the interplay of the different incompleteness types creates a complex
space of candidate model structures. A key feature of ProBMoT’s structure enumeration
stage is that it tackles the different types of incompleteness one by one. Each type of incom-
pleteness it addresses by one phase of the structure enumeration stage. The responsibility
of each phase is to generate all candidate model structures that will resolve that type of
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Figure 6.3: Estimation of parameters of a single candidate model structure

incompleteness. This layered approach ensures that no incompleteness is left unaddressed
and all possible candidates are considered.

The space of all candidate model structures is finite. This comes as a result of the finite
number of candidate models generated in each phase. We therefore, move to show that each
phase generates a finite number of models.

In the first phase, only the top-level processes are considered. As there is a finite number
of top-level processes and a finite number of process templates to choose from, ProBMoT
generates a finite number of candidate models.

In the second phase, the argument bindings of the top-level processes are considered.
As the number of top-level processes and the number of arguments per process are finite,
the total number of arguments in the model is also finite. For each unbound argument,
ProBMoT considers all subsets of entities of the suitable types. The number of entities in
the model is finite and as a result, the number of possible argument bindings has to be finite.

In the third phase, the nested processes are considered. As the resolution of nested
processes can introduce additional nested processes, ProBMoT resolves nested processes re-
cursively. In order to ensure that a recursive procedure is finite, we have to take appropriate
measures. In this case, the finiteness of the recursion is a result of the fact that the nested
processes can not be cyclically nested and moreover, the types of nested processes can not
be cyclically nested.

6.2 Parameter Estimation Stage

6.2.1 Model Output

The model can be expressed as a set of ordinary differential equations:
% = £(t,x(1),u(r)) (6.6)

where x(¢) € R” represents the complete internal state of the system and the exogenous
variables u(t) € R¥ capture the influence of the environment. Observing the system means
that we monitor a set of variables y(¢) € R™ that depend on the time ¢, the system’s internal
state x(t), and the external input u(f):

y = h(z,x(7),u()) (6.7)

The simplest observational scenario is where we can measure a subset of the state vari-
ables, i.e., y = (x; (¢),...,%x:,(t)), I={i1,i2,...,im} C{1,2,...,n}. These variables x; are the
observed variables whereas the rest of the state variables Xy, are the hidden (or unobserved)
variables.
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In systems which involve many state variables, it is often expensive or even not techno-
logically possible to measure all state variables. Therefore, for large and complex systems
it is commons to have only partial observability. Another origin of such scenario is in the
case of data repurposing, when the acquisition of the data is performed before the modeling
scenario is known and it is not possible to revise the experiment.

In some cases, a single output variable can depend on several state variables. A typical
situation in modeling of ecosystems is when the measurement technique cannot distinguish
between two or more state variables. An example is an aquatic ecosystem in which there
are two types of phytoplankton (diatoms and dinoflagellates), modeled as separate enti-
ties (phytoDia and phytoDino respectively), each involved in their own trophic processes.
The measured data, however, may not contain separate measurements, but instead contain
cumulative concentration (phytoMeasured = phytoDia + phytoDino).

Within ProBMoT, the observability scenario is modeled with an output specification.
The output specification is a set of output constants, which can be fixed or unspecified, and
a set of output variables, which are modeled with algebraic equations.

In particular, let O be the set of all output specification. Then, the elements of O are
defined with the following mappings:

constants : O — Z(OC) (6.8a)
variables : © — Z(OV) (6.8b)

where OC is the set of output constants and OV is the set of output variables.
The elements of OC are defined with a single mapping:

value : OC — R (6.9)

which captures the value of the output constant.

Each output constant, similarly to a model constant, can be specified or unspecified.
We therefore partition the set of output constants constants(O) into a set of specified output
constants constants®(0) and a set of unspecified output constants constants®(0), such that
constants®(0) N constants® (0) = @ and constants®(0) U constants® (0) = constants(0). The
value mapping is defined only for the elements of constants®(0):

reR C € constants” (0)
value(C) = o (6.10)
undefined C € constants™~(0)
The elements of OV are defined with the mappings:
value : OV — (R — R) (6.11a)
function : OY — (R" — R) (6.11b)
inputs : OY — (N - YUCUOC) (6.11c)

The value mapping represents the value of the variable trough time and is therefore
modeled as a real function. Each output variable has an associated equation, the functional
form of which is represented with the function mapping. The inputs mapping represents the
inputs that appear in the equation for the particular output variable. Each input can be a
model variable or constant or output constant.

6.2.2 Equation Compilation

The task of the equation compilation stage is, given a completely specified process-based
model and an output specification, to translate them into the equivalent equations. The
result of the equation compilation is a list of ordinary differential equations and a list of
algebraic equations.
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The first step is to gather all equation fragments that influence an endogenous variables
into a single equations. For each endogenous variable V € endogenous(M), we designate by
equations(V) the set of all equations that influence V:

equations(V) = {Q € Q|lhs(Q) =V} (6.12)
We assume that the set equations(V) has some (arbitrary) ordering, such that:

equations(V) = {Q1,02,...,0r} (6.13)

Each equation Q; has a functional form denoted by function(Q;) and a specification of
the input arguments inputs(Q;). We define the mapping function®™® that is compositions of
all function mappings that influence a single variable V:

function® (V) = aggregation(V ) (function(Qy), ..., function(Qx)) (6.14)

We also define the mapping inputs®? that is a concatenation of all inputs mappings that
influence a single variable V composed with Algorithm 6.4.

Algorithm 6.4 Generating the inputs mapping

1: procedure GENERATEINPUTS(V) returns inputs®(V)

2 inputs**(V) < &

3 k<0

4: OS < equations(V) >0S={01,...,0u}
5: for all 0 € 0S do

6 for all (i,A) € inputs(Q) do >AecVUC
7 inputs®?(V) «+ inputs™ (V) U (k+1i,A)

8 end for

9 k < k+ |inputs(Q)|

10: end for

11: return inputs**(V)

12: end procedure

ProBMoT performs a two-step simulation. The first step is a numerical simulation of a
set of ordinary differential equations. The second step is a simple computation of algebraic
functions which involve equations from the model and output equations.

The model output is the ultimate result of the simulation of a process-based model. The
output contains the most important state variables or functions thereof. Depending on the
scenario, the user may be interested in one or only a few state variables, which correspond
to one part or aspect of the modeled system. Suitable output equations are then provided
in the output specification that reflect the interest of the user.

In such a setup, not all equations are necessary to compute the values of the output
variables. The equations which are not needed in order to produce simulations for the output
variables are not computed. ProBMoT determines the necessary variables and constants for
the algebraic and differential simulation separately.

First, starting from the output variables and their associated equations, it determines
the variables and constants needed for the algebraic simulation (Algorithm 6.5). It follows
all endogenous variables that have associated algebraic equations and traverses all variables
that occur in those equations. The algorithm stops the exploration when it reaches a state
or exogenous variable.

Second, starting from the state variables required for the algebraic simulation, ProBMoT
does another traversal on the equations graph, this time marking the variables and constants
needed for the differential simulation (Algorithm 6.6). In this pass, it follows all endogenous
variables, traversing their associated algebraic and differential equations, stopping when it
reaches exogenous variables.
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Algorithm 6.5 Determining the needed equations for the algebraic simulation

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

procedure NEEDEDALGEBRAIC(M,0) returns (needed), ,,neededs, )

pending <+ empty Queue
traversed <— &
needed$, ., < @
needed), , + @
for all OV € variables(O) do
for all variables V that appear in inputs(OV) do
pending.enqueue(V)
needed), ., + needed, ,U{V}
end for
for all constants C that appear in inputs(OV) do
neededs, ., < needed, ,J{C}
end for
end for
while pending is not empty do
V < pending.dequeue
if V & traversed then
traversed < traversed U{V }
if auxiliary(V) = true then
for all variables V that appear in inputs(V) do
pending.enqueue(V)
needed),, ., + needed),,UJ{V}
end for
for all constants C that appear in inputs(V) do
neededs, ., < needed, ,U{C}
end for
end if
end if
end while
return (needed), ,,needed, )

31: end procedure
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Algorithm 6.6 Determining the needed equations for the differential simulation

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

procedure NEEDEDDIFFERENTIAL(M needed), ,) returns (needed,) ., needed; )

pending + empty Queue
traversed < &
neededy , + &
needed) . + &
for all V € needed), , do
if state(V) = true then
pending.enqueue(V)
needed" < needed" U {V}
end if
end for
while pending is not empty do
V « pending.dequeue
if V & traversed then
traversed < traversed J{V }
if endogenous(V) = true then
for all variables V that appear in inputs(V) do
pending.enqueue(V)
needed, , + needed,, . U{V}
end for
for all constants C that appear in inputs(V) do
neededy,, < neededy’,, U{C}
end for
end if
end if
end while
return (needed) ., needed;,)

28: end procedure
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Once the set of algebraic and differential equations necessary to produce the required
output are determined, the next step is to sort those equations. The sorting procedure
for the equations for the differential and algebraic simulations is carried out separately,
even though it is very similar. The sorting procedure is based on the most commonly used
algorithm for topological sorting known as Kahn'’s algorithm (Kahn, 1962).

Algorithm 6.7 Sorting the equations needed for differential simulation

1: procedure SORTDIFFERENTIAL(neededy),) returns L

2 L < empty List > L will contain the ordered variables
3 S < empty Queue > § contains the variables with no input dependencies
4: remaining <— <& > remaining will contain the set of all input dependencies
5: for all V € needed);, do

6 if endogenous(V) = true then

7 for all endogenous variables V that appear in inputs(V) do

8 remaining < remaining U{(V,V)}

9

: end for
10: end if
11: end for
12: for all V € needed);, do
13: if endogenous(V) = true Ainputs(V) = @ then
14: S+ Su{v}
15: end if
16: end for
17: while S is not empty do
18: V + S.dequeue
19: insert V into L
20: for all endogenous variables V that appear in inputs(V) do
21: remove (V,V) from remaining
22: if there are no V such that (V,V) € remaining then
23: S.enqueue(V)
24: end if
25: end for
26: end while
27: if remaining = & then
28: return L
29: else
30: raise Exception(cyclic dependency detected)
31: end if

32: end procedure

Each endogenous variable takes the form of a node in a graph. The links between the
nodes are the memberships of the variables in the equations associated with other variables.
Kahn’s algorithm starts with the set of nodes with no input dependencies, i.e., the endoge-
nous variables that are not influenced by any equation, but only by exogenous variables.
Each such endogenous variable appears on the left-hand side of an exactly one equation.
All endogenous variables with no input dependencies are inserted into the resulting ordered
list and removed from the graph. The order in which they are inserted is not important
because they are independent of each other. The algorithm then proceeds iteratively. In
each iteration it finds the set of all endogenous variables which have no input dependencies
(because they were removed in the previous iteration) and adds them to the resulting list.
In the end, the algorithm should remove all variables from the graph. In case there are
variables of which none has an empty set of input dependencies that signalizes a cyclic de-
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pendency between the variables. In such a case, ProBMoT terminates and returns an error
indicating that it has encountered a cyclic dependency in the equations. The result of the
topological sort is an ordered list of endogenous variables and represents the order in which
the associated equations should be executed.

The result of the topological sort is not unique, since it represents a partial ordering.
Note however, that any topologically sorted ordering of the equations is acceptable because
they all preserve the dependencies between the variables and equations.

The procedure for sorting the equations needed for the differential simulation (Algo-
rithm 6.7) and the procedure for sorting the equations needed for the algebraic simulation
(Algorithm 6.8) are very similar. Operating on the set of needed equations, they iteratively
remove equations that do not have input dependencies from the equation graph and add
them to a list which tracks the resulting ordering. The key difference is that the sets of
equations on which the procedures operate are different (needed), . and neededy , respec-
tively for the algebraic and differential simulation). The other main difference is that the
within the differential simulation, all endogenous equations including both differential and
algebraic are taken as links in the equation graph, whereas within the algebraic simulation
only algebraic equations are considered when traversing the equation graph.

Algorithm 6.8 Sorting the equations needed for algebraic simulations

1: procedure SORTALGEBRAIC(needed), ) returns L

2 L < empty List

3 S + empty Queue

4 remaining <— &

5: for all V € needed), do

6 if auxiliary(V) = true then

7 for all auxiliary variables V that appear in inputsV do
8 remaining < remaining U{(V,V)}

9

: end for
10: end if
11: end for
12: for all V € needed) , do
13: if auxiliary(V) = true A inputs(V) = @ then
14: S« Su{v}
15: end if
16: end for
17: while S is not empty do
18: V « S.dequeue
19: insert V into L
20: for all auxiliary variables V that appear in inputs(V) do
21: remove (V,V) from remaining
22: if there are no V such that (V,V) € remaining then
23: S.enqueue(V)
24: end if
25: end for
26: end while
27: if remaining = @ then
28: return L
29: else
30: raise Exception(cyclic dependency detected)
31: end if

32: end procedure
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6.2.3 Model Simulation

At this stage in the pipeline, ProBMoT has determined the set of state and exogenous
variables needed in the differential and algebraic simulations. To streamline the notation
in this section, we designate those sets as vectors with an arbitrary ordering: X—the vec-
tor of state variables needed for the differential simulation, U—the vector of exogenous
variables needed for the differential simulation, X—the vector of state variables needed for
the algebraic simulation, and U~ the vector exogenous variables needed for the algebraic
simulation.

In the differential simulation, given a time interval T = [f,2y], we want to determine the
values of the state variables X on T, i.e., we want to determine the mapping values|r(X).
During the simulation, the values of the exogenous variables values|y(U), as well as the initial
values of the state variables initial(X) are already known. At this point, the functional form
of the equations associated with the state variables are given by function®®(X).

Substituting conventional notations for the state variables X = values|7 (X ), the exogenous
variables @ = values|r(U), the equation structure f = function®¥(X), and the initial values
Xo = initial(X),we arrive at the standard formulation of a system of ordinary differential
equations:

%x — £, %(0), (1)) (6.152)
£ = %0 (6.15b)

The formulation given in Equation (6.15) is the standard definition of the initial value
problem (IVP) of ODEs (Atkinson, 1989). To find the values of the functions X means
to numerically solve the initial value problem. Methods that solve the IVP, discretize the
integration interval T into a series of time points fo,f1,...,fy and solve a set of difference
equations at each time point (Gupta et al., 1985).

ProBMoT uses CVODE for numerically solving ODEs and in particular relies on BDF
in combination with a Krylov method (Saad and Schultz, 1986) for the linear solver within
the Newton iterations.

The set of output algebraic equations in the form:

y = h(z,x(1),u(r)) (6.16)

where x is the vector of needed state variables, u is the vector of needed exogenous variables
and y is the vector of output variables.

6.2.4 Measuring Model Performance

Once the output variables are simulated, we obtain the output behavior of the model. We
judge the performance of the model based on how well this behavior corresponds to the
observed behavior of the output variables, typically acquired by experimental measurements.

The value of each output variable is defined as a function value(OV) :R — R. In a
particular observational scenario, however, the domain of the function is restricted to time
interval T, so the mapping becomes: T — R. The values of all output variables variables(O)
are defined as such functions, thus making the behavior of the model output a multivariate
time series: T — R”, where n is the number of output variables.

In practice, the measurements, as well as the simulated output variables, are not con-
tinuous values, but presented at discrete time points. Let T be the discretization of the
time interval T given as T = [t,t1,...,ty]. Let y = [y1,...,ym] be the vector of output vari-
ables. The measurements of the output variables form a matrix Y = [Yy,...,Y ], where each
Y;=1[50j,---,9n;]T is a column vector of the measurements for the output variAable Vi at ti/\me
points fg,...,t;. The simulated output variables produce a similar matrix Y = [Y,..., Y],
where each Y; = [Jo;,...,9,,]7 is a column vector of the simulated values for the output
variable y; at time points fo, ..., Z,.
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We represent visually the observed and simulated output behavior with the following
scheme:

time Y] Yz R Ym /Y\1 ?2 ?m
fo | Yo Yoo - Yom | Yor Yoo Yom
nolyn Yizo o0 Yim | Y1 Yiz2o o Vim
h |y Yo 0 Yum | Y2 Y2 o Yom
Iy ynl 5’n2 S’nm )/’\nl )/;nZ Sj\nm

The task of evaluating the performance of the model is translated to measuring how well
these two m-variate time-series match each other. In the simplest scenario where we have
only one output variable, the problem reduces to measuring the discrepancy between two
single-variable time-series.

We use the maximum-likelihood estimator introduced by R.A.Fisher in 1912 (Pfanzag],
1994) that maximizes the probability of observing the given data if a given model is cho-
sen. The likelihood function depends on the probability of the measurements in the data
set. Assuming that the measurements follow independent normal distributions with con-
stant variance, the maximume-likelihood parameter estimation maps into a nonlinear least-
squares estimation of the parameters, which minimizes the sum of squared errors between
the observed values and the values predicted by the model. Due to its intuitive appeal and
simplicity, least-squares estimation is commonly used for parameter estimation in nonlinear
models.

The most basic form of least-squares estimation uses the sum of squared errors (SSE)
for expressing the model error, which sums up the squares of the differences between the
measured values y; and the the predicted values y;, at each time point i.

SSE =Y (3 —%)* (6.17)
i=0

Root mean squared error (RMSE) divides the SSE by the number of time points n+ 1
and takes the square root, making the measurement units and scale comparable to the ones
of the observed output variable.

1 1 &
5=\ 895 =\ [y L) (619

Root relative squared error (RRSE) is the square root of the total squared error made
relative to what the error would have been if the prediction had been the average of the
absolute value. RRSE is expressed in percentages compared to the average as a predictor:

RRSE = (6.19)

where ¥ is the average of the measured data.

We decompose the error of the output vector y into the errors of each output variable
y; and aggregate them into a single error which we attribute to y. ProBMoT allows us to
specify arbitrary error measures for the output variables y; as well as arbitrary aggregation
schemes. It is important to keep in mind that if we use error measures that do not produce
values on the same scale for all output variables, some output variables may take over.

The default implementation of an error measure for the output vector is a sum of the
RRSE values for all output variables.

yU N)

RRSE1ora1, = Z \/sz ylj) (6.20)
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6.2.5 Parameter Estimation

Given a structurally complete model M, we denote with parameters(M) the set of all model
parameters including initial values and constants. Among them, we denote the specified pa-
rameters with parameters® (M) and the unspecified with parameters®(M). Additionally, given
an output specification O, we denote with constants(O) the output parameters, including the
specified constants®(0) and the unspecified constants®(0).

The task of the parameter estimation is to find the most suitable values for parameters® (M)
and constants®(0), hence completing the values and initial mappings.

Parameter estimation leads to challenging optimization tasks that typically require ad-
vanced meta-heuristic approaches for global optimization, such as evolutionary or swarm-
based methods. Ecological models are typically nonlinear and have many parameters; the
measurements are sparse and imperfect due to noise. All these constraints can lead to iden-
tifiability problems, i.e., the inability to uniquely identify the unknown model parameters,
making parameter estimation an even harder optimization task.
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7 Experimental Evaluation

In this chapter, we evaluate ProBMoT, our system for inductive process modeling, by ap-
plying it to several real-world problems of automated modeling of aquatic ecosystems. Each
of these problems has been previously addressed by applying LAGRAMGE 2.0 to measured
data about the ecosystem at hand and the domain knowledge library for modeling aquatic
ecosystems constructed by Atanasova et al. (2006b).

The four aquatic ecosystems considered are the lakes of Bled, Glumsg and Kasumigaura
and the lagoon of Venice. The library of domain knowledge by Atanasova et al. (2006b) was
adapted to use the ProBMoT formalism, described in Chapters 3 and 4. The process-based
modeling formalisms of ProBMoT and LAGRAMGE 2.0 are quite similar, which facilitated
the adaptation of the library.

Originally, (slightly) different versions of the library were used for each ecosystem.
Slightly different IPM tasks were addressed, involving different kinds of nutrients, phy-
toplankton and zooplankton, as well as different conceptual processes. Here, all of these
are put side-by-side, making very clear the similarities and differences between the different
datasets and modeling tasks.

A major difference between the ProBMoT and LAGRAMGE 2.0 platforms lies in the
parameter optimization approaches employed. LAGRAMGE 2.0 relied on the use of a
standard-issue derivative-based local-optimization approach (ALG-717), combined with ran-
dom restarts to ease the problem of multiple local optima. ProBMoT, on the other hand, also
includes global meta-heuristic optimization approaches, based on ant-colony optimization
(DASA) and evolutionary optimization (DE).

Our experimental evaluation focuses on investigating the effect that the parameter op-
timization approach used within ProBMoT has on the automated modeling process overall.
In particular, we compare ProBMoT using ALG-717, which is very close to LAGRAMGE
2.0, and ProBMoT using DASA, a recently developed well-performing global meta-heuristic
optimization approach. We are especially interested in the interplay between parameter
optimization and model structure selection, since the error of a model (obtained after fitting
its parameters) is used to perform the latter.

The evaluation is performed in the context of descriptive (as opposed to predictive)
modeling, where the model is established to explain the observed behavior (training data)
and not to predict future system behavior (test data). This is in line with previous inductive
process modeling approaches and their evaluation. Therefore, we do not apply the usual
train/test split of the data sets, nor do we apply cross-validation procedures. In consequence,
we do not evaluate whether ProBMoT and its parameter estimation methods overfit the
training data—since we are addressing an explanatory modeling task. However, we are
aware that the issue of overfitting, especially in the context of better parameter estimation
procedures, is very relevant. Evaluating ProBMoT in the context of establishing predictive
models of dynamical systems is discussed as part of the further work in Chapter 8.
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7.1 Experimental Setup

The aim of this study is to compare the influence of two established methods for parameter
estimation, ALG-717 and DASA, on the overall process of automated modeling of aquatic
ecosystems. The study addresses the task of modeling phytoplankton dynamics in four dif-
ferent aquatic ecosystems. First, we developed a library for modeling aquatic ecosystems,
which we used as domain knowledge. Second, we obtained data from four ecosystems, rel-
evant for modeling phytoplankton dynamics. Finally, we formulated conceptual models for
each ecosystem. The resulting experimental setup consisted of 21 tasks of modeling phyto-
plankton dynamics, where a task is defined by the combination of a conceptual model and
a data set. Fach task was given to ProBMoT using both ALG-717 and DASA as parameter
estimation methods, yielding a total of 42 experiments. The details of the experimental
setup are given in the following subsections.

7.1.1 A Library for Modeling Aquatic Ecosystems

Using the formalism for representing domain knowledge for building process-based models
presented in Chapter 3, we developed a library for modeling aquatic ecosystems. The library
is based on the work for process-based modeling by (Atanasova et al., 2006b), where a similar
library was developed using a different formalism. The entire library is given in Table B.1
in Appendix A.

The generalized conceptual model for modeling aquatic ecosystems underlying the li-
brary is given in Figure 7.1. The rounded rectangles represent the entity types and include
Nutrient, Primary Producer and Zooplankton. The boxes represent the interactions between
the entities in the form of process types. The library is constructed around the primary pro-
ducer as a central entity. It contains processes suitable for modeling the dynamics of the
primary producer. The main processes that affect the dynamics are growth, respiration,
mortality, sedimentation and grazing. In the following subsections, we briefly present the
modeling knowledge encoded in the library.

The Growth of Primary Producers

The growth process positively influences the concentration of the primary producer and can
be stated as:

d
4 Pp-conc = pp. growthRate X pp.conc (7.1)

where pp.conc is the concentration of the primary producer and pp.growthRate is the primary
producer growth rate. The growth rate itself can be formulated as a limited growth rate,
influenced by temperature, light and nutrient limitation functions:

pp.growthRate = pp.maxGrowthRate x pp.tempGrowthLim X pp.lightLim x pp.nutrientLim (7.2)

where pp.maxGrowthRate is the maximal growth rate under optimal conditions, pp.temp-
GrowthLim is the temperature influence on the growth rate, pp.lightLim is the influence of
light on the growth rate, and pp.nutrientLim is the product of the limitation functions of
all nutrients that are relevant for the growth of the primary producer.

Each type of limitation can be modeled with several different limitation functions that
are present in the library. The influence of temperature on the growth can be modeled
with two linear functions and an exponential function. In addition to this, temperature
limitation can be turned off, by setting it to 1, which yields 4 alternatives for modeling the
temperature influence. Similarly, light influence can be turned off or modeled with Monod
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or the optimal light limitation function, whereas nutrient limitation (for each nutrient) can
be turned off or modeled with one of the Monod, Monod2 and exponential functions.

If all limitations are turned off (equal to 1), then the pp.growthRate coefficient is equal
to pp.mazxGrowthRate, i.e., is constant and the growth process is formulated as non limited,
i.e. exponential growth function.

Respiration

The respiration of a primary producer decreases its mass, i.e., the phytoplankton mass. It
can be expressed as an exponential decay or can be temperature-influenced. In the case
where respiration is temperature-influenced, the influence of temperature can be expressed
in terms analog to the influence of temperature on phytoplankton growth, i.e., no limitation
at all or limitation in the form of one of two linear functions and one exponential limitation
function.

Mortality

The mortality process represents non-predatory mortality and is included in scenarios where
there is no grazing process included. The mortality can be expressed as an exponential
decay of phytoplankton (first order kinetics) or second order kinetics. The process may be
temperature-limited. The temperature limitation functions in the library include two linear
functions and one exponential function.

Grazing

The grazing process included in the library is formulated for zooplankton filter-feeders as:

d I . :
—pp.conc = —zoo.maxFiltrationRate x zoo.tempGrowthLim X zoo.phytoLim X zoo.conc X pp.conc

dt

(7.3)
where zoo.maxFiltrationRate is the maximal filtration rate coefficient, zoo.conc is the zoo-
plankton concentration and pp.conc is the concentration of the phytoplankton. The temper-
ature influence on grazing is specified through the zoo.tempGrowthLim term, which contains
a linear or an exponential temperature limitation function option.

Sedimentation

Loss of phytoplankton biomass due to sedimentation is formulated by using the sedimenta-
tion rate coeflicient, depth of the water column and the present concentration of the phy-
toplankton. The process may be temperature-influenced, where the temperature functions
include two linear functions and one exponential function.

7.1.2 Data Sets

The data used for this study comes from four different ecosystems, namely Lake Bled in
Slovenia, Lake Glumsg in Denmark, Lake Kasumigaura in Japan, and the lagoon of Venice in
Italy. For each aquatic ecosystem, a number of physical, chemical and biological parameters
were measured regularly for a sustained period of time in order to obtain the resulting data
sets. Table 7.1 provides a summary of the data sets.

Lake Bled is a typical subalpine lake of glacial-tectonic origin. It occupies an area of 1.4
km? with a maximum depth of 30.1 m and an average depth of 17.9 m. The data set about
the lake (obtained from the Slovenian Environmental Agency) comprises measurements of
physical, chemical and biological parameters from 1995 to 2002 with a monthly frequency.
The data used for modeling are as follows: temperature, light, dissolved inorganic nutrients
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Table 7.1: Summary of measured data for the modeled ecosystems.

Bled Glumsg Kasumigaura Venice
Environmental Temperature Temperature Temperature Temperature
influence Light Light Light
Phosphorus Phosphorus Phosphorus Phosphorus
Nutrients Nitrogen Nitrogen Nitrogen Nitrogen
Silica Ammonia
Primary Phytoplankton  Phytoplankton = Phytoplankton  Algal biomass
producer (as Chl-a) of Ulva Rigida
Zooplankton Zooplankton Zooplankton None None
(Daphnia
Hyalina)
Years 1995-2002 1973/74 1986-1992 Loc 0: 1985/86
1974/75 Loc 1,2,3:
1990/91
Number of 8 2 7 4
data sets

in the lake (phosphorus, nitrogen and silica), and total phytoplankton biomass, and the
zooplankton species Daphnia hyalina. The data were used as daily interpolated values
between the measured points, obtained by using cubic spline interpolation (Atanasova et al.,
2006¢).

Lake Glumsg is situated in a sub-glacial valley in Denmark. It is a shallow lake with
an average depth of about 2 m and a surface area of 266,000 m?. The data set for Lake
Glumsg includes daily measurements of water temperature, inorganic soluble nitrogen, sol-
uble phosphorous, total phytoplankton, and zooplankton. In this case, we used two years of
daily measurements from April 1973 to April 1974 and from October 1974 to October, 1975
(Atanasova et al., 2008).

Lake Kasumigaura is a shallow lake in Japan with an average depth of 4 m. It has a
volume of 662 million m® and a surface area of 220 km?. The lake’s dataset comprises mea-
surements from 1986 to 1992 of: water temperature, global radiation, dissolved inorganic
phosphorus, total phytoplankton, measured as chlorophyll-a (chl-a). The measurements
were used as interpolated values between the actual measured values using linear interpola-
tion. The actual frequency of the measurements is monthly (Atanasova et al., 2006a).

The Lagoon of Venice has a surface area of 550 km?, with an average depth of less than 1
m. The data set used here includes weekly measurements for slightly more than one year at
four different locations (0, 1, 2, and 3) in the Lagoon. Location 0 was sampled in 1985/86,
locations 1, 2, and 3 in 1990/91. The sampled quantities are nitrogen in ammonia (nh), ni-
trogen in nitrate (no), phosphorus in orthophosphate, temperature, and algal biomass ( Ulva
rigida). Related modeling experiments with this data set were described by (Atanasova,
2006).

We assemble the data sets according to domains and years. This yields eight data sets
from Lake Bled, two from Glumsg, seven from Kasumigaura and four from Venice, giving a
total of 21 data sets.

7.1.3 Inductive Process Modeling Tasks

In this study, we focus on the task of modeling phytoplankton dynamics using data from
the domains presented in the previous section. For each domain (ecosystem), we prepare a
conceptual model appropriate for modeling that particular case. The conceptual model is
crafted in the formalism presented in Chapter 3. It includes the entities for which we have
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Figure 7.1: The generalized scheme of processes for modeling conceptual models, underlying the
library of domain knowledge in aquatic ecosystems.
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Figure 7.2: Schematic representation of the evaluation methodology. (a) Vector of model errors; (b)
ProBMoT/ALG and ProBMoT/DASA vectors of model errors; (c) Best Model Improvement; (d)
Overall Model Improvement; (e) Individual Model Improvement.
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Table 7.2: A summary of the modeling tasks per domain (ecosystem).

Bled Glumsg Kasumigaura Venice
Phosphorus Phosphorus Phosphorus Phosphorus
Nitrogen Nitrogen Nitrogen Nitrate
Entities Silica Phytoplankton Phytoplankton =~ Ammonia
Phytoplankton Zooplankton Zooplankton Phytoplankton
Zooplankton
Growth Growth Growth Growth
Conceptual Respiration Respiration Respiration Respiration
processes Grazing Grazing Mortality Mortality
Sedimentation = Sedimentation  Sedimentation  Sedimentation
Candidate 27216 3024 5832 18144

models

measurements and the conceptual top-level processes appropriate for modeling phytoplank-
ton dynamics: growth, respiration, mortality, sedimentation, and grazing by zooplankton.
For two of the domains, Bled and Glumsg, there is data about zooplankton concentration.
In these cases, we include a grazing process in the conceptual models. For Kasumigaura and
Venice, where there is no data about zooplankton species, we include a natural mortality
process instead. The conceptual models are outlined in Table 7.2.

For each domain, we tailor the general library presented in Section 7.1.1. to the require-
ments of the particular modeling task. We include processes which are needed for completing
the conceptual model of the system. Based on previous analyses and previous knowledge
about the domain, specific process alternatives which are appropriate for the given domain
are taken into account, whereas unsuitable alternatives are discarded. Information about
which processes are included in the pertinent libraries is given in Table 7.3.

For each modeling task, starting with a conceptual model and a library of domain knowl-
edge, ProBMoT generated all specific candidate models structures. For the Bled domain it
generated 27216 candidate models. The Glumsg task yielded 3024 candidates, the Venice
task 5832 and Kasumigaura task 18144 candidate models. The constant parameters of each
generated candidate model structure are fitted with ALG-717 and DASA.

The data from the domains are divided into separate data sets for each year. In the case
of Venice, where data were collected at different locations, one data set corresponds to one
location where the measurements were taken. In our experiments, the goal is to construct a
separate model for each data set. The model is an explanatory model of the system for the
given time range.

7.2 Evaluation Methodology

Each run of ProBMoT generates a series of N candidate model structures and applies pa-
rameter estimation method to obtain the models m;, i=1,...,N. For each candidate model
structure ProBMoT calculates its error RMSE(m;) on the provided data set. The resulting
vector of model errors is schematically presented in Figure 7.2(a), where the number in the
lower left corner of each box represents the sequential number of the model structure (as
generated by ProBMoT) and the number in the center of the box represents the model error
(for the set of parameter values estimated by ProBMoT). Let us denote the models obtained
by ProBMoT/ALG and ProBMoT/DASA with m? and mP, respectively. To evaluate the
impact of the optimization method on the ProBMoT performance, we thus compare the
vectors (RMSE(m{),RMSE(mj),...,RMSE(my)) and (RMSE(mP),RMSE(m?),...,RMSE(mR))

(Figure 7.2(b)). We emphasize here three aspects of this comparison, depicted in Figure
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Table 7.3: Outline of the process templates modeled in the specific libraries for each modeling task.

Process template
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N AN NN N N N NN ENENENEN

TempMortInfluence
NoTempMortLim
TempMortLim

Linear1TempMortLim
Linear2TempMortLim
Exponential TempMortLim
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TempSedInfluence
NoTempSedLim
TempSedLim

LinearlTempSedLim
Linear2TempSedLim
Exponential TempSedLim
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7.2(c, d & e), that correspond to the three central questions below.

Best Model Improvement What is the difference between the errors of the best models
obtained with ProBMoT/DASA and ProBMoT/ALG?

Most importantly, we want to compare the best model found by ProBMoT /DASA to the
best model found by ProBMoT/ALG as depicted in Fig 7.2(c). This is the key aspect of the
comparison, since the modeler focuses his attention to the best model found by ProBMoT.
Our hypothesis is that ProBMoT/DASA leads to the best model with lower error. Note
that the best models found by ProBMoT/DASA and ProBMoT/ALG can differ not only in
the parameter values but also it the model structure.

Overall Model Improvement What is the overall difference between the errors of the
models obtained with ProBMoT/DASA and ProBMoT/ALG?

Comparing the best models is an important aspect of comparison, but only provides
a part of the whole picture. Here, we extend our attention from the best models to
overall model comparison as depicted in Figure 7.2(d). We first rank the models ob-
tained by ProBMoT/ALG and ProBMoT/DASA with respect to their errors, i.e., we ob-
tain two ranked lists of models, such that RMSE(m} ) < RMSE(mj,) < ... < RMSE(mj, ) and
RMSE(mle) < RMSE(m’jz) <...< RMSE(mdDN). We proceed with comparison of these two
ranked lists as follows.

First, we check the extent to which ProBMoT/DASA outperforms ProBMoT/ALG,
i.e., whether only the best ProBMoT/DASA model outperforms the best ProBMoT/ALG
model or this holds for a wider range of models. We will be able to identify the ranges of
models where ProBMoT /DASA is better and possibly where ProBMoT /ALG is better. Our
hypothesis is that ProBMoT /DASA will outperform ProBMoT /ALG on the whole range of
models.

Second, it will show whether the amount by which ProBMoT/DASA outperforms ProB-
MoT/ALG on the i best model, as measured by the difference RMSE(m’) —RMSE(mgi )s
increases or decreases as we move towards lower ranked models. Clearly, lower ranked mod-
els will have larger model errors, but we are also interested in the way the model error
increases. Slow increase in model error means that we have a number of candidate models
which have virtually equal performance and choosing among them is subject to other non-
trivial constraints. Very rapid increase in the model error makes the distinction between
good and bad models clear and makes choosing a final model an easier task. It is preferable
to have a large error increase at the beginning of the ranked list so one can clearly distinguish
between a few good and a majority of bad models. Our hypothesis is that ProBMoT /DASA
provides a more clear distinction between good and bad models than ProBMoT/ALG.

Finally, we measure of the overall performance of ProBMoT/ALG and ProBMoT /DASA,
by summing up the errors of all candidate models:

N N
Overally = ZRMSE(mf‘) Overallp = ZRMSE(mlD) (7.4)
i=1 i=1

Individual Model Improvement What is the difference between the errors of each
candidate model structure obtained with ProBMoT/DASA and ProBMoT/ALG?

In the previous type of comparison, the models are ordered according to ascending
RMSE. When we are comparing the i"® best ProBMoT/ALG model mg,(p) to the it
best ProBMoT/DASA model my,(pf)), we are in general comparing two different model
structures, i.e., a; # d; in the general case. In the final and most stringent comparison,
we compare the performance of ProBMoT/DASA and ProBMoT/ALG on the same model
structure, i.e., m;(pP) and m;(p?), for i=1,...,N.
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Table 7.4: Root mean squared error (RMSE) of the best models found with ProBMoT/ALG and

ProBMoT/DASA.
Bled Glumsg
‘95 ‘96 ‘97 ‘98 ‘99 ‘00 ‘01 ‘02 ‘73 ‘74
ProBMoT/ALG | 0.650 0.362 0.800 0.802 1.282 2439 0.683 0.771 | 0.099 0.074
ProBMoT/DASA | 0.376  0.206 0.157 0.443 1.205 0.821 0.455 0.240 | 0.034  0.030
Kasumigaura Venice
‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 Lo L1 L2 L3
ProBMoT/ALG | 1.685 0.775 0.674 0.782 0.648 0.819 0.981 | 138.417221.619111.924 55.987
ProBMoT/DASA | 1.249 0.646 0.381 0.417 0.350 0.766 0.458 | 83.431 203.007 88.459 43.085
12r 071
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Figure 7.3: Simulations of the best models found with ProBMoT/ALG and ProBMoT/DASA on
several data sets. (a) Bled '97; (b) Glumsg ’73; (¢) Kasumigaura ’92; (d) Venice 0.

To perform this comparison, we use the ranking of models obtained by ALG to rank both
list of models, i.e.: RMSE(m{ ) < RMSE(m} ) < ... < RMSE(m} ) and RMSE(mb),RMSE(mb),
...,RMSE(mgN) as depicted in Figure 7.2(e). We then observe the distribution of differences
RMSE(m(}) — RMSE(mZ) for i=1,...,n, where the value of n ranges from 2 through 10, 100,
1000, (and 10000, if N > 10000) to N.

7.3 Results and Discussion

In this section, we present and discuss the results of the empirical evaluation. The analy-
sis is based on the comparison of the performance of ProBMoT when using the ALG-717
(ProBMoT/ALG) and the DASA (ProBMoT/DASA) optimization algorithms for solving
the parameter estimation task.

Most of the computation time (over 99%) of ProBMoT is spent on numerical simulation.
Therefore, the number of evaluations of the objective function is the key parameter which
is controlled during optimization. Both DASA and ALG-717 are given the same number of
evaluations. The number of evaluations during the optimization of each candidate model
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Table 7.5: Total root mean squared error (Total-RMSE) of all models generated with ProBMoT/ALG
and ProBMoT/DASA.

Bled (x10°) Glumsg (x10%)
‘95 ‘96 ‘97 ‘08 ‘99 ‘00 ‘01 ‘02 ‘73 ‘74
ProBMoT/ALG 23.44 2248 1459 27.01 1076 46.64 39.32 29.89 | 39.01 38.07
ProBMoT/DASA | 3.802 7.442 3.247 7.058 9.555 7.802 15.05 1.915 | 18.73 13.79

Kasumigaura (x10°) Venice (x107)

‘86 ‘87 ‘88 ‘89 ‘90 ‘91 ‘92 Lo L1 L2 L3
ProBMoT/ALG 128.1 42.52 36.74 30.75 39.6 30.26 48.84 | 111.1 152.0 1084 9.234
ProBMoT/DASA | 58.54 5.836 11.78 17.86 7.295 13.58 10.47 | 87.09 138.2 73.17 7.608

is computed as 5000 times the number of unknown parameters of the model. DASA is an
iterative method and the number of evaluations can be directly set as a parameter. ALG-
717, on the other hand, is a deterministic method and converges within certain number
of steps (evaluations) depending on the complexity of the landscape. ProBMoT restarts
ALG-T17 a certain number of times in order to avoid being trapped in a local optimum.
The number of restarts ProBMoT performs is set so that the total number of evaluations
of ALG-717 matches that of DASA, i.e., is equal to 5000 times the number of unknown
parameters.

7.3.1 Best Model Improvement

Table 7.4 shows the RMSE values for the best models found with ProBMoT/ALG and
ProBMoT/DASA on all data sets. Since the models selected by ProBMoT/DASA always
have a lower RMSE than those selected by ProBMoT/ALG, we can conclude that DASA
outperforms ALG on each modeling task.

Figure 7.3 shows the simulations of the best ProBMoT/ALG and the best ProBMoT /-
DASA model on some of the tasks, along with the measured data. There is a considerable
difference in the errors of the best models found on the Bled ’97 task. This quantitative
difference in the RMSE values is directly visible as a qualitative difference in the simula-
tions. The ALG model simulation exhibits some resemblance to the measured data, whereas
the DASA model simulation follows the dynamics of the phytoplankton concentration very
closely, both in terms of time of rapid phytoplankton growth and peak amplitude.

The Glumsg ’73 task gives similar results. The DASA model represents a close match
of the original data, whereas the ALG model only gives a rough approximation, completely
missing the main peak of phytoplankton concentration.

The Kasumigaura ’92 task is a more challenging task. On this task, ALG does not man-
age to find an admissible model which can be seen from the large error and the simulation,
which follows the measured data very poorly. DASA does not excel on this task either,
but still manages to roughly identify the two peaks in the phytoplankton concentration and
their magnitude.

An even poorer performance of ALG is observed on the Venice data set at location 0.
The model found by ALG produces erratic behavior and fails to capture any underlying
dynamics. The DASA model represents a considerable improvement over ALG, despite
of its poor overall quality. The simulations of the best models for all tasks are given in
Appendix B. Our hypothesis that the best ProBMoT/DASA model outperforms the best
ProBMoT/ALG model on each task is thus fully confirmed.

7.3.2 Overall Model Improvement

Figure 7.4 shows the error profiles for both ALG and DASA on the tasks from Figure 7.3.
The profile curves on these tasks, as well as all the other tasks (presented in Appendix
C.) clearly show that DASA manages to find better models throughout the space of model
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Figure 7.4: Error profile curves of models found with ProBMoT/ALG and ProBMoT/DASA on
several data sets. (a) Bled '97; (b) Glumsg '73; (c) Kasumigaura ’92; (d) Venice 0.

structures. In other words, not only the best model found with ProBMoT/DASA is better
than the best one found with ProBMoT/ALG, but also the second best model found with
ProBMoT/DASA is better than the second best model found with ProBMoT/ALG, the
third best model from ProBMoT/DASA is better than the third best model from ProB-
MoT/ALG, and so forth. The only exceptions are the few models at the very tail of the
ranked list of models. In these cases, both ALG and DASA find poor parameter values, but
in some cases the models with parameter values found with DASA have larger RMSE than
those with parameters found with ALG. Our hypothesis that ProBMoT/DASA outperforms
ProBMoT/ALG, not only on the best models for each task, but on the complete range of
models (with the exception of the very few models at the end) is thus confirmed.

Table 7.5presents the overall error of ProBMoT/ALG and ProBMoT/DASA on each
task. It is clear that the total error of ProBMoT /DASA is smaller than the total error of
ProBMoT/ALG on each task.

A closer inspection of the error profiles shows that the shapes of the profiles of ProB-
MoT/ALG and ProBMoT/DASA are very different. In general, the RMSE of the ProB-
MoT/ALG models increases rapidly with the increase in the rank number at the beggining
of the error profile and remains steady from there on. Thus, ProBMoT/ALG clearly distin-
guishes a small number of good models from a large number of bad models. The opposite
is true for the shape of the ProBMoT/DASA profile. A very large part of the models that
appear at the beginning of the profile have indistinguishably similar RMSE values and a
much smaller part of the models at the end have much larger RMSE values. Thus, DASA
doesn not provide a useful distinction of good and bad models. This is contrary to our
initial expectations, and our hypothesis that DASA will provide a more clear distinction of
good and bad models is rejected. Within the conclusion and further work, we examine the
possible reasons for this outcome and formulate a new hypothesis related to this behavior
of ProBMoT /DASA.



100 Experimental Evaluation

600
20+
500 F t
400 [
g g o0
13 13 L
2 300f kel L
5 5 I——
8 B of
g 200f g | .
H
— == [ i
100 ! ~10|- . —
. - L
, : : ' : !
r 1 1
‘ ‘ ‘ ‘ ‘ ‘ -20t ‘ ‘ ‘ s .
2 10 100 1000 10000 27216 2 10 100 1000 3024
Top Models Top Models
(a) (b)
f 25x107
[ I - £
3000 5
[ 2.0x107 |-
2000 [
[ 15x107 |-
9 £ F . =
3 L [
g 1000¢ E 1.0x10" -
T [ 2 [
% 0 L — "7 % L *
u n L i —+ w 5.0%10° -
z : g : T
~1000 i = of T
—2000 -5.0x 106; 1
3000 1 ~1.0x107F
C L L L L L L L L L L L L
2 10 100 1000 10000 18144 2 10 100 1000 5832
Top Models Top Models
(c) (d)

Figure 7.5: Distributions of the model-wise differences of errors between ProBMoT/ALG and ProB-
MoT/DASA. (a) Bled ’97; (b) Glumsg ’73; (c) Kasumigaura ’92; (d) Venice 0.

7.3.3 Individual Model Improvement

Figure 7.5 shows the distributions of error differences between models fitted with DASA
and with ALG for the tasks from Figure 7.3. The first box-plot in each figure represents
a summary of the differences of the two best models found with ALG. If these differences
are above zero, DASA does not miss the two best solutions found by ALG. Next, the
distributions of differences for the 10, 100, 1000 and 10 000 (if applicable) best models are
shown. Lastly, the distribution of differences for all models is shown. In all cases, there is
a clear shift of the distribution away from zero, which indicates that DASA overall finds
better parameter values than ALG for the same model structures. Moreover, in the vast
majority of cases, DASA manages to find better parameter values for the model structures
for which ALG finds the best values. Notable exceptions are Kasumigaura '86 and Venice
3 where DASA does not manage to find better parameter values than ALG on several best
structures identified by ALG. The distributions of error differences for all tasks are given in
Appendix D.

7.4 Conclusion

In this chapter, we performed an extensive experimental evaluation of ProBMoT. Data
from four different aquatic ecosystems were used, collected over different lengths of time,
ranging from two to eight years. A library of domain knowledge for modeling this type of
ecosystems was used as well. For the four different ecosystems and different periods of time,
we addressed 21 different automated modeling tasks.

The focus of the experimental evaluation was the effect of the use of different methods
for parameter estimation within ProBMoT. Unlike previous approaches to inductive process
modeling, ProBMoT can use both local and global optimization approaches. We investigated
the effects of substituting DASA, a global search method for the previously used local search
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method ALG-717.

The results conclusively show that DASA outperforms ALG-717 on all modeling tasks.
Not only ProBMoT using DASA manages to find better models for the systems, DASA
manages to find better parameter values across the whole spectrum of model structures.
Furthermore, refitting the best model structure found by ALG with DASA yields better
results in almost all cases.

Automated modeling has so far focused mostly on discovering single year models of
aquatic ecosystems and this is the approach taken in the present experimental evaluation.
The reason for this is that experiments with discovering models which hold for longer periods
of time yielded poor results in earlier work. We conjecture that this is largely due to the
poor parameter estimation when using local search methods. Using global search methods
opens the opportunity to tackle long term modeling of dynamical systems with automated
modeling tools.

One clue to support this conjecture lies in the error profile curves. Almost without
exception, ALG manages to find good parameter values for very few model structures which
can be seen by the shape of the error profile curve which increases rapidly at the beginning
and reaches a plateau of models with high error values afterwards. The error profile curves
of DASA instead show a plateau of models with low error values which are equally good,
and poor parameter values for very few model structures which can be seen by the increase
in error values near the end of the curve.

This means that the small data sets used do not provide enough information to dis-
criminate among the different model structures. It is evident that it is not easy to select
an appropriate model structure, or more precisely, that a single one-year data batch does
not provide enough information to narrow down the choice to a single (or a few) model
structure(s). It is thus necessary to use more data on several years (a longer batch or sev-
eral one-year batches) to obtain additional information that would further narrow down
the choice among the large number of model structures. Hence, we need to use longer,
multi-year data sets, to narrow down the choice of model structures.
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8 Conclusion

In this thesis, we presented a formalism for modeling dynamical systems. The formalism
describes a dynamical system as a process-based model, consisting of entities and processes.
Entities and processes can optionally be structured within compartments.

The process-based formalism enables us to express background knowledge in the same
language as the model. The knowledge about entities, processes, and compartments is ab-
stracted into templates, which are the main components of knowledge about a given domain.
These templates are gathered into a library of domain-specific background knowledge, which
formalizes the knowledge we have about a given domain.

We presented ProBMoT, a platform for automated modeling of dynamical systems that
takes into account knowledge expressed in the process-based formalism. Using an incom-
pletely specified conceptual model of the system, the library of domain-specific knowledge,
and measurement data for a particular system, it identifies both the structure and numerical
parameters of a model for the system.

We applied ProBMoT on a case study of modeling phytoplankton dynamics in four
aquatic ecosystems. We adapted an existing domain-specific library for modeling aquatic
ecosystems, which we used as background knowledge. The experiments compared the in-
fluence of two established methods for parameter estimation, ALG-717 and DASA, on the
overall process of automated modeling of aquatic ecosystems.

In the remainder of this chapter, we summarize the main contributions of the thesis and
outline some directions for further work.

8.1 Summary of Contributions

The contributions of the dissertation are along three main lines, summarized in the following
subsections:

8.1.1 Process-Based Formalism

The thesis presented a novel formalism for representing process-based models and back-
ground knowledge. This process-based formalism integrates several improvements over pre-
vious formalisms. In this way, it directly addresses their limitations.

We developed a mathematical notation to express the relations that hold between the
components of the process-based formalism. The mathematical notation encompasses the
components of process-based models, as well as background knowledge. The structure of
models and libraries is represented through mathematical functions and relations. The
semantics of the process-based libraries and models are expressed as logical statements that
must hold. This notation, presented in Chapter 4, is then utilized to define incompletely
specified models in Chapter 5, describe the algorithms of the ProBMoT platform in Chapter
6, and present the results of the empirical case study in Chapter 7.

We augmented process-based models and background knowledge with compartments,
which are used to structure the content of process-based models. With their use, we can
represent real-world dynamical systems as hierarchical multi-compartment models. To the
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best of our knowledge, this is the first process-based formalism (inductive process modeling
approach) that allows for (the learning of) compartmental models.

We represent a conceptual model of a system with an incompletely specified process-
based model—a process-based model which is incomplete in the structural specification or
in the numerical parameters. Incomplete models, described in detail in Chapter 5, serve as
a means to specify the partial knowledge one has about the system that is being modeled,
thus defining the task and space of feasible model candidates for the ProBMoT platform.
While previous IPM approaches have used implicit definitions of incomplete models (such
as task specifications), they have not formalized and defined them clearly, precisely and
explicitly.

8.1.2 Inductive Process Modeling Platform ProBMoT

We developed the IPM platform ProBMoT, which implements the proposed process-based
formalism for representing models, incomplete models, and libraries. As presented in Chap-
ter 6, ProBMoT implements the complete pipeline of inductive process modeling including
enumeration of all candidate model structures and parameter estimation. ProBMoT includes
several improvements that give it a competitive advantage over existing IPM methods.

ProBMoT supports arbitrary observational scenarios. Observational scenarios are de-
fined by an explicit output specification which includes not only observable and hidden
variables, but arbitrary algebraic equations that can involve all model variables and con-
stants. The parameters of these algebraic equations can be fitted as well.

Besides the local method used in earlier IPM approaches, ProBMoT also includes global
optimization methods for the parameter estimation stage. The global methods are based
on meta-heuristic optimization approaches, such as differential evolution and ant-colony
optimization. The global optimization methods outperform local optimization methods in
finding parameter values for the model structures considered by ProBMoT.

ProBMoT allows the use of various quality criteria of model fitness. ProBMoT integrates
different quality criteria in the form of various error function. These error functions can serve
as objective functions for the optimization algorithms for parameter estimation.

8.1.3 Empirical Evaluation of ProBMoT

We applied ProBMoT to modeling phytoplankton growth in four different aquatic ecosys-
tems. These are the lakes of Bled, Glumsg and Kasumigaura, and the lagoon of Venice.
The case study, presented in Chapter 7, yielded several important results.

The case study demonstrated the suitability of the ProBMoT platform for automated
modeling of highly nonlinear dynamical systems, such as aquatic ecosystems. Describing an
aquatic ecosystem with a process-based model was intuitive and appealing to the domain
experts. Defining the phenomena in the system as processes quantified with equations very
closely resembles the natural way ecological modelers approach the modeling process. More-
over, this case study illustrated the appropriateness of capturing domain-specific knowledge
with libraries of entity and process templates. The case study was focused on building
explanatory models of the aquatic ecosystems. Hence, the performance of the models was
evaluated on the training sets.

We identify three criteria for comparing the performance of parameter estimation meth-
ods in the context of structure identification. Best model improvement is the simplest
criterion which compares only the best models found by ProBMoT with the different pa-
rameter estimation techniques. Overall model improvement compares all models found using
the different parameter estimation techniques, paired according to rank. Finally, individual
model improvement pairs models with the same model structure and assesses the relative
performance of the parameter estimation techniques for each model structure.
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The case study reiterates a statement known from numerous previous studies,i.e., that
global optimization methods perform better than local optimization methods at finding
suitable values for parameters of ODEs. We extend those claims to the task of automated
modeling and demonstrate that metaheuristics outperform local search when dealing with
multiple candidate model structures. The use of better parameter optimization methods
highlights and emphasizes the need for larger amounts of high-quality data to distinguish
between alternative model structures.

8.2 Further Work

We present four main directions for further (and, to a certain extent, ongoing) work.

8.2.1 More Extensive Experimental Evaluation

The first direction for further work concerns additional experimental evaluation of ProB-
MoT. The work presented in this dissertation focuses on the development of the ProBMoT
platform, the process-based formalism it uses, and the underlying algorithms. The experi-
mental evaluation constitutes a more modest part of the presented work.

Further systematic experimental evaluation is required to reaffirm the conclusions drawn
in this dissertation. The further experimentation should be carried out along three main
branches.

The first one is an experimental study based on synthetic data. Starting with a known
model, the model is simulated and the resulting simulation is used as input to the algorithm.
The goal in such an exercise is to reconstruct the behavior of the model taken as ground
truth.

The second branch is experimental evaluation of ProBMoT on the task of predictive
modeling. Our work, up until this point, has mainly focused on building explanatory mod-
els. When building predictive models, the issue of overfitting the available data should be
properly addressed. Therefore, it is essential to introduce new objective functions based
on the MDL principle (Rissanen, 1978), which will take into account the complexity of the
model structure, i.e., introduce preference-bias towards simpler model structures.

The third branch of experimental evaluation should focus on evaluating ProBMoT in
different scientific domains. The principal domain of focus in this dissertation has been that
of aquatic ecosystems. Modeling aquatic ecosystems is a complex task and the sufficient
modeling knowledge that exists in this domain makes it a very good candidate for inductive
process modeling.

Another domain in which modeling knowledge becomes increasingly abundant and better
organized is systems biology. First steps in formulating a library of background knowledge
suitable for modeling biochemical cellular processes have already been made. It is expected
that further development of such knowledge and experimental results will follow in due
course.

8.2.2 From Short-Term to Long-Term Models

Automated modeling of aquatic ecosystems with IPM approaches has so far focused mostly
on discovering single-year models and this is the approach we have taken in our work. The
reason for this is that experiments with discovering models which hold for longer periods
of time yielded poor results in earlier work. We conjecture that this is largely due to the
poor parameter estimation when using local search methods. Using global search methods
opens the opportunity to tackle long term modeling of dynamical systems with automated
modeling tools.
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One clue to support this lies in the error profile curves for model structures considered by
ProBMoT, produced with different parameter estimation techniques (Chapter 7). Almost
without exception, local methods manage to find good parameter values for very few model
structures which can be seen by the shape of the error profile curve which increases rapidly
at the beginning and reaches a plateau of models with high error values afterwards. The
error profile curves of global methods instead show a plateau of models with low error values
which are equally good, and poor parameter values for very few model structures which can
be seen by the increase in error values near the end of the curve. This means that the small
data sets used do not provide enough information to discriminate among the different model
structures. Hence, we need to use longer, multi-year data sets, to narrow down the choice
of model structures.

8.2.3 Heuristic Exploration of Candidate Model Structures

The space of all possible candidate model structures that is defined by an incompletely
specified model and a library is very complex in nature. The work presented in this thesis
approaches the removal of incompleteness in stages, thus creating a sequential model gen-
eration procedure. In this procedure, all completions of the incomplete model structure are
considered. In practice, a very large number of such structures may result, thus making the
approach computationally prohibitive.

Alternative direction that should be explored is implementing a heuristic search proce-
dure that will replace the exhaustive enumeration of candidate model structures. Searching
the space of model structures heuristically has the advantage of traversing only a subset
of the search space and is more time-efficient. It can thus be used to tackle much larger
problems for which enumerating all structures would not be feasible.

8.2.4 Further Improvements of the Parameter Estimation Subsystem

Most of the work presented in the dissertation concentrates on the expressiveness of the
process-based formalism and the generation of candidate model structures. In practice, the
usefulness of IPM methods is largely limited by the efficiency of method for parameter esti-
mation that is used. We do focus on development of methods for parameter estimation, and
instead integrate well-established, proven nonlinear optimization methods to solve the pa-
rameter estimation task. ProBMoT’s architecture is flexible and allows effortless integration
of additional optimization methods.

An important direction of further work is the integration of additional methods for
parameter estimation, especially global methods for nonlinear optimization. The global
methods integrated in ProBMoT have performed well at the BBOB 2009 benchmark®, which
has been superseded by the BBOB 2013 benchmark. We intent to integrate some of the
methods that have performed best at the BBOB 2013, and in particular CMA-ES (Hansen
and Ostermeier, 1996) which has shown excellent results.

Thttp://coco.gforge.inria.fr
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B Aquatic Ecosystems Library

Table B.1: The complete library of the domain knowledge for modeling aquatic ecosystems used for
ProBMoT.

// ENTITIES

template entity EcosystemEntity {
vars :
conc {aggregation:sum; unit:"kg/m"~3"; range:<0,inf>};

template entity Population : EcosystemEntity {
vars:
tempGrowthLim{aggregation:product},
tempRespLim{aggregation:product},
tempMortLim{aggregation:product},
tempExcLim{aggregation:product},
) tempSedLim{aggregation:product};

template entity PrimaryProducer : Population {
vars:
nutrientLim{aggregation:product},
lightLim{aggregation:product},
growthRate;
consts:
maxGrowthRate { range: <0.05,3>; unit:"1/(day)"};

template entity Zooplankton : Population {
vars:
phytoLim{aggregation:sum},
phytoSum{aggregation:sum};
consts:
maxFiltrationRate { range: <0.01, 15>; unit:"m3/(mgZoo*day)"},
assimilationCoeff { range: <0,inf>; unit:"mgZoo/(mghAlgae)"};

template entity Nutrient : EcosystemEntity {
consts:
halfSaturation {range: <0,15>; unit:"mg/1"},
alpha {range: <0,inf>; unit:"mgAlgaeBiomass/mgZooBiomass"};

template entity Environment {
vars:
temperature,light,flow;
consts:
volume,depth,area;
}

// PROCESSES

template process NutrientPrimaryProducerInteraction
(pp : PrimaryProducer, ns : Nutrient<1l, inf>, env : Environment ) {
processes:
LightInfluence(pp, env), NutrientInfluence(pp, <n:ns>), Growth(pp, ns, env),
RespirationPP(pp, ns, env);

// Temperature Growth Influence
template process TempGrowthInfluence(pop : Population, env : Environment) {}

template process NoTempGrowthLim : TempGrowthInfluence {
equations:
pop.tempGrowthLim = 1;

template process TempGrowthLim : TempGrowthInfluence {
consts:
refTemp { range: <10, 22>},
minTemp { range: <0, 6>},
optTemp { range: <15, 25>};

template process Linearl1TempGrowthLim : TempGrowthLim {
equations:
pop.tempGrowthLim = env.temperature/refTemp;
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template process Linear2TempGrowthLim : TempGrowthLim {
equations:
pop.tempGrowthLim = (env.temperature - minTemp)/(refTemp - minTemp) ;

template process ExponentialTempGrowthLim : TempGrowthLim {
consts:
theta { range: <1.06, 1.13>};
equations:
pop.tempGrowthLim = pow(theta, env.temperature - refTemp);

// Temperature Respiration Influence
template process TempRespInfluence(pop : Population, env : Environment) {}

template process NoTempRespLim : TempRespInfluence {
equations:
pop.tempRespLim = 1;

template process TempRespLim : TempRespInfluence {
consts:
refTemp { range: <10, 22>},
minTemp { range: <0, 6>},
optTemp { range: <15, 25>};

template process LineariTempRespLim : TempRespLim {
equations:
pop.tempResplLim = env.temperature/refTemp;

template process Linear2TempRespLim : TempRespLim {
equations:
pop.tempRespLim = (env.temperature - minTemp)/(refTemp - minTemp) ;

template process ExponentialTempRespLim : TempRespLim {
consts:
theta { range: <1.06, 1.13>};
equations:
pop.tempRespLim = pow(theta, env.temperature - refTemp);

// Temperature Mortality Influence
template process TempMortInfluence(pop : Population, env : Environment) {}

template process NoTempMortLim : TempMortInfluence {
equations:
pop.tempRespLim = 1;

template process TempMortLim : TempMortInfluence {
consts:
refTemp { range: <10, 22>},
minTemp { range: <0, 6>},
optTemp { range: <15, 25>};

template process LineariTempMortLim : TempMortLim {
equations:
pop.tempResplLim = env.temperature/refTemp;

template process Linear2TempMortLim : TempMortLim {
equations:
pop.tempResplLim = (env.temperature - minTemp)/(refTemp - minTemp) ;

template process ExponentialTempMortLim : TempMortLim {
consts:
theta { range: <1.06, 1.13>};
equations:
pop.tempRespLim = pow(theta, env.temperature - refTemp);

// Temperature Sedimentation Influence

template process TempSedInfluence(pop : Population, env : Environment) {}
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template process NoTempSedLim : TempSedInfluence {
equations:
pop.tempSedLim = 1;

template process TempSedLim : TempSedInfluence {
consts:
refTemp { range: <10, 22>},
minTemp { range: <0, 6>},
optTemp { range: <15, 25>};

template process Linear1TempSedLim : TempSedLim {
equations:
pop.tempSedLim = env.temperature/refTemp;

template process Linear2TempSedLim : TempSedLim {
equations:
pop.tempSedLim = (env.temperature - minTemp)/(refTemp - minTemp) ;

template process ExponentialTempSedLim : TempSedLim {
consts:
theta { range: <1.06, 1.13>};
equations:
pop.tempSedLim = pow(theta, env.temperature - refTemp);

// Light Influence
template process LightInfluence(pp: PrimaryProducer, env: Environment) {}

template process NoLightLim : LightInfluence {
equations:
pp.lightlim = 1;

template process LightLim : LightInfluence {}

template process MonodLightLim : LightLim {
consts:
halfSat {range: <0, 200>};
equations:
pp.lightlLim = env.light / (env.light + halfSat);

template process OptimalLightLim : LightLim {
consts:
optLight {range: <100, 200>};
equations:
pp.lightLim = env.light * exp(- env.light / optLight + 1) / optLight;
}

// Nutrient Influence
template process NutrientInfluence(pp : PrimaryProducer, n : Nutrient) {}

template process NoNutrientLim : NutrientInfluence {
equations:
pp.nutrientlLim = 1;

}
template process NutrientLim : NutrientInfluence {}

template process MonodNutrientLim : NutrientLim {
equations:
pp.nutrientlim = n.conc / (n.conc + n.halfSaturation);

template process Monod2NutrientLim : NutrientLim {
equations:
pp.nutrientLim = n.conc * n.conc / (n.conc * n.conc + n.halfSaturation);

1
template process ExponentialNutrientLim : NutrientLim {
consts:
saturationRate { range: <0, 15>};
equations:

pp.nutrientLim = 1 - exp(-saturationRate * n.conc);




126 Appendix

// Growth
template process Growth(pp : PrimaryProducer, ns : Nutrient<1, inf>, env : Environment) {
processes:
TempGrowthInfluence(pp, env), GrowthRate(pp, ns, env);
equations:
td(pp.conc) = pp.growthRate * pp.conc,
td(<n:ns>.conc) = -n.alpha * pp.growthRate * pp.conc;

X
template process GrowthRate(pp : PrimaryProducer, ns : Nutrient<1l, inf>, env: Environment) {}
template process LimitedGrowthRate : GrowthRate {
equations
pp.growthRate = pp.maxGrowthRate * pp.tempGrowthlLim * pp.lightLim * pp.nutrientLim;
}
// Respiration PP

template process RespirationPP(pp : PrimaryProducer, ns : Nutrient<1, inf>, env: Environment) {}

template process ExponentialRespirationPP : RespirationPP {

consts:
respRate {range: <0.0001, 2>};
equations:
td(pp.conc) = -respRate * pp.conc,
td(<n:ns>.conc) = respRate * pp.conc;
}
template process TempRespirationPP : RespirationPP {
processes:

TempRespInfluence(pp, env);

template process TemplRespirationPP : TempRespirationPP {
consts:
respRate {range: <0.0001, 1>};
equations:
td(pp.conc) = -respRate * pp.conc * pp.tempRespLim,
td(<n:ns>.conc) = respRate * pp.conc * pp.tempRespLim;

template process Temp2RespirationPP : TempRespirationPP {
consts:
respRate {range: <0.0001, 1>};
equations:
td(pp.conc) = -respRate * pp.conc * pp.conc * pp.tempRespLim,
td(<n:ns>.conc) = respRate * pp.conc * pp.conc * pp.tempRespLim;

}
// Mortality PP
template process MortalityPP(pp : PrimaryProducer, env : Environment) {

processes:
TempMortInfluence(pp, env);

template process ExponentialMortalityPP : MortalityPP {

consts:

mortRate {range: <0.0001, 2>};
equations:

td(pp.conc) = -mortRate * pp.conc;

template process TempMortalityPP : MortalityPP {

consts:
mortRate {range: <0.0001, 2>};
equations:
td(pp.conc) = -mortRate * pp.conc * pp.tempMortLim;

template process Temp2MortalityPP : MortalityPP {

consts:
mortRate {range: <0.0001, 2>};
equations:
td(pp.conc) = -mortRate * pp.conc * pp.conc * pp.tempMortLim;
// Feeds On

template process FeedsOn(zoo:Zooplankton, pps:PrimaryProducer<l,inf>, env: Environment){
processes
TempGrowthInfluence(zoo, env), PhytoLim(zoo, pps);
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template process FeedsOnFiltration: FeedsOn{
equations :
td(zoo.conc) = zoo.assimilationCoeff * zoo.maxFiltrationRate * zoo.tempGrowthLim
* zoo.conc * zoo.phytoSum * zoo.phytoLim,
td(<pp:pps>.conc) = - zoo.maxFiltrationRate * zoo.tempGrowthlLim * zoo.conc
* pp.conc * zoo.phytoLim;

}
template process PhytoLim(zoo: Zooplankton, pps : PrimaryProducer<1,inf>) {}

template process NoPhytoLim : PhytoLim {
equations:
zoo.phytoLim = 1;

template process MonodPhytoLim : PhytoLim {
consts:
halfSaturation {range: <0, 20> };
processes:
Summation(zoo, pps);
equations:
zoo.phytolLim = zoo.phytoSum/ (halfSaturation+ zoo.phytoSum);

template process Monod2PhytoLim : PhytoLim {
consts:
halfSaturation {range: <0, 20> };
processes:
Summation(zoo, pps);
equations:
zoo.phytolLim = zoo.phytoSum * zoo.phytoSum / (zoo.phytoSum * zoo.phytoSum + halfSaturation);

template process ExponentialPhytoLim : PhytoLim {
consts:
saturationRate {range: <0, 5> };
processes:
Summation(zoo, pps);
equations:
zoo.phytolLim = 1 - exp(-saturationRate * zoo.phytoSum);

template process Summation(zoo : Zooplankton, pps: PrimaryProducer<l,inf>) {
equations:
Zz0o.phytoSum = <pp:pps>.conc;

template process Sedimentation(pop : Population, env: Environment) {
processes:
TempSedInfluence (pop, env);
consts:
sedimentationRate { range: <0.0001, 0.5>; unit:"1/(day)"};
equations:
td(pop.conc) = -(sedimentationRate / env.depth) * pop.conc * pop.tempSedLim;
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C Detailed Experimental Results

C.1 Model Simulations
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Figure C.1: Simulations of the best models found by ProBMoT/ALG and ProBMoT/DASA for each
task for the Glumsg domain. (a) Glumsg ’73; (b) Glumsg ’74.
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Figure C.2: Simulations of the best models found by ProBMoT/ALG and ProBMoT/DASA for each
task for the Venice domain. (a) Venice Loc. 0; (b) Venice Loc. 1; (¢) Venice Loc. 2; (d) Venice Loc.
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Figure C.3: Simulations of the best models found by ProBMoT/ALG and ProBMoT/DASA for each
task for the Bled domain. (a) Bled '95; (b) Bled *96; (c) Bled '97; (d) Bled '98; (e) Bled "99; (f) Bled
'00; (g) Bled "01; (h) Bled *02.
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Figure C.4: Simulations of the best models found by ProBMoT/ALG and ProBMoT/DASA for each
task for the Kasumigaura domain. (a) Kasumigaura '86; (b) Kasumigaura ’87; (c¢) Kasumigaura ’88;
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C.2 Error Profiles
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Figure C.5: Error profiles for ProBMoT/ALG and ProBMoT/DASA on all automated modeling
tasks for the Glumsg domain. (a) Glumsg '73; (b) Glumsg '74.
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Figure C.6: Error profiles for ProBMoT/ALG and ProBMoT/DASA on all automated modeling
tasks for the Venice domain. (a) Venice Loc. 0; (b) Venice Loc. 1; (c¢) Venice Loc. 2; (d) Venice
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Figure C.7: Error profiles for ProBMoT/ALG and ProBMoT/DASA on all automated modeling
tasks for the Bled domain. (a) Bled ’95; (b) Bled '96; (c) Bled ’97; (d) Bled '98; (e) Bled ’99; (f)
Bled *00; (g) Bled *01; (h) Bled "02.
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Figure C.8: Error profiles for ProBMoT/ALG and ProBMoT/DASA on all automated modeling
tasks for the Kasumigaura domain. (a) Kasumigaura '86; (b) Kasumigaura '87; (c¢) Kasumigaura
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C.3 Error Difference Distributions
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Figure C.9: Distribution of the model-wise differences of RMSE between ProBMoT/ALG and ProB-
MoT/DASA for all automated modeling tasks for the Glumsg domain. (a) Glumsg ’73; (b) Glumsg
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Figure C.10: Distribution of the model-wise differences of RMSE between ProBMoT/ALG and
ProBMoT/DASA for all automated modeling tasks for the Venice domain. (a) Venice Loc. 0; (b)
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Figure C.11: Distribution of the model-wise differences of RMSE between ProBMoT/ALG and
ProBMoT/DASA for all automated modeling tasks for the Bled domain. (a) Bled ’95; (b) Bled "96;
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Figure C.12: Distribution of the model-wise differences of RMSE between ProBMoT/ALG and
ProBMoT/DASA for all automated modeling tasks for the Kasumigaura domain. (a) Kasumigaura
’86; (b) Kasumigaura '87; (¢) Kasumigaura '88; (d) Kasumigaura ’89; (e) Kasumigaura ’90; (f)
Kasumigaura '91; (g) Kasumigaura ’92.
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